Multiple zeta functions, multiple polylogarithms and their special values (Q2796474): Difference between revisions

From MaRDI portal
Added link to MaRDI item.
UpdateBot (talk | contribs)
Changed label, description and/or aliases in en, and other parts
 
(2 intermediate revisions by 2 users not shown)
label / enlabel / en
Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values
Multiple zeta functions, multiple polylogarithms and their special values
description / endescription / en
scientific article
scientific article; zbMATH DE number 6560232
Property / title
Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values (English)
 
Property / title: Multiple Zeta Functions, Multiple Polylogarithms and Their Special Values (English) / rank
Normal rank
 
Property / published in
 
Property / published in: Series on Number Theory and Its Applications / rank
Normal rank
 
Property / MaRDI profile type
 
Property / MaRDI profile type: Publication / rank
 
Normal rank
Property / full work available at URL
 
Property / full work available at URL: https://doi.org/10.1142/9634 / rank
 
Normal rank
Property / OpenAlex ID
 
Property / OpenAlex ID: W4230781866 / rank
 
Normal rank
Property / title
 
Multiple zeta functions, multiple polylogarithms and their special values (English)
Property / title: Multiple zeta functions, multiple polylogarithms and their special values (English) / rank
 
Normal rank
Property / published in
 
Property / published in: Series on Number Theory and its Applications / rank
 
Normal rank
Property / review text
 
The book is a very good introduction to the theory of multiple zeta functions and multiple polylogarithms and their special values. It covers the majority of the results in the field since Euler until our days.NEWLINENEWLINELet \(d\in\mathbb{N}\) and \(\underline{s}=(s_1, \ldots, s_d)\in\mathbb{C}\). The multiple zeta function of depth \(d\) is defined by NEWLINE\[NEWLINE \zeta(\underline{s})= \sum_{k_1> \cdots >k_d>0} k_1^{-s_1}\cdots k_d^{-s_d}, NEWLINE\]NEWLINE \(\mathrm{Re}(s_1+ \cdots + s_j)>j\) for all \(j=1, \dots, d\). If the sum runs over \(k_1\geq \cdots \geq k_d>0\), then we have the multiple zeta star function \(\zeta^*(\underline{s})\).NEWLINENEWLINESuppose that \(s_1, \dots, s_d\in \mathbb{N}\) and \(\underline{x} = (x_1, \dots x_d)\in \mathbb{C}^d\) such that \(|\prod_{j=1}^l x_j|<1\) for all \(j=1, \dots, d\). The multiple polylogarithm of depth \(d\) is defined by NEWLINE\[NEWLINE \text{Li}_{s_1, \dots, s_d}(\underline{x})= \sum_{k_1> \cdots > k_d\geq 1} {{x_1^{k_1}\cdots x_d^{k_d}}\over{k_1^{s_1}\cdots k_d^{s_d}}}. NEWLINE\]NEWLINE The multiple zeta values are the convergent special values of the multiple zeta functions at positive integers. Multiple zeta star values are defined similarly.NEWLINENEWLINELet \(\mu=\exp(2\pi \sqrt{-1}/N)\). A colored multiple zeta value of level \(N\) is a number NEWLINE\[NEWLINE L_n(s_1, \dots, s_d| i_1, \dots, i_d) = \text{Li}_{s_1, \dots, s_d}(\mu^{i_1}, \dots \mu^{i_d}). NEWLINE\]NEWLINENEWLINENEWLINEThe book is divided into 15 chapters:NEWLINENEWLINE1. Multiple zeta functions.NEWLINENEWLINE2. Multiple polylogarithms.NEWLINENEWLINE3. Multiple zeta values.NEWLINENEWLINE4. Drinfeld associator and single-valued multiple zeta values.NEWLINENEWLINE5. Multiple zeta value identities.NEWLINENEWLINE6. Symmetrized multiple zeta values.NEWLINENEWLINE7. Multiple harmonic sums and alternating version.NEWLINENEWLINE8. Finite multiple zeta values and finite Euler sums.NEWLINENEWLINE9. \(q\)-analogs of multiple harmonic (star) sums.NEWLINENEWLINE10. Multiple zeta star values.NEWLINENEWLINE11. \(q\)-analogs of multiple zeta functions.NEWLINENEWLINE12. \(q\)-analogs of multiple zeta (star) values.NEWLINENEWLINE13. Colored multiple zeta values.NEWLINENEWLINE14. Colored multiple zeta values at lower levels.NEWLINENEWLINE15. Application to Feynman integrals.NEWLINENEWLINEEach chapter is accompanied by historical notes and exercises. At the end of the book, 6 appendixes are given, the last of them is devoted to answers to some exercises.NEWLINENEWLINEThe bibliography contains 644 references.
Property / review text: The book is a very good introduction to the theory of multiple zeta functions and multiple polylogarithms and their special values. It covers the majority of the results in the field since Euler until our days.NEWLINENEWLINELet \(d\in\mathbb{N}\) and \(\underline{s}=(s_1, \ldots, s_d)\in\mathbb{C}\). The multiple zeta function of depth \(d\) is defined by NEWLINE\[NEWLINE \zeta(\underline{s})= \sum_{k_1> \cdots >k_d>0} k_1^{-s_1}\cdots k_d^{-s_d}, NEWLINE\]NEWLINE \(\mathrm{Re}(s_1+ \cdots + s_j)>j\) for all \(j=1, \dots, d\). If the sum runs over \(k_1\geq \cdots \geq k_d>0\), then we have the multiple zeta star function \(\zeta^*(\underline{s})\).NEWLINENEWLINESuppose that \(s_1, \dots, s_d\in \mathbb{N}\) and \(\underline{x} = (x_1, \dots x_d)\in \mathbb{C}^d\) such that \(|\prod_{j=1}^l x_j|<1\) for all \(j=1, \dots, d\). The multiple polylogarithm of depth \(d\) is defined by NEWLINE\[NEWLINE \text{Li}_{s_1, \dots, s_d}(\underline{x})= \sum_{k_1> \cdots > k_d\geq 1} {{x_1^{k_1}\cdots x_d^{k_d}}\over{k_1^{s_1}\cdots k_d^{s_d}}}. NEWLINE\]NEWLINE The multiple zeta values are the convergent special values of the multiple zeta functions at positive integers. Multiple zeta star values are defined similarly.NEWLINENEWLINELet \(\mu=\exp(2\pi \sqrt{-1}/N)\). A colored multiple zeta value of level \(N\) is a number NEWLINE\[NEWLINE L_n(s_1, \dots, s_d| i_1, \dots, i_d) = \text{Li}_{s_1, \dots, s_d}(\mu^{i_1}, \dots \mu^{i_d}). NEWLINE\]NEWLINENEWLINENEWLINEThe book is divided into 15 chapters:NEWLINENEWLINE1. Multiple zeta functions.NEWLINENEWLINE2. Multiple polylogarithms.NEWLINENEWLINE3. Multiple zeta values.NEWLINENEWLINE4. Drinfeld associator and single-valued multiple zeta values.NEWLINENEWLINE5. Multiple zeta value identities.NEWLINENEWLINE6. Symmetrized multiple zeta values.NEWLINENEWLINE7. Multiple harmonic sums and alternating version.NEWLINENEWLINE8. Finite multiple zeta values and finite Euler sums.NEWLINENEWLINE9. \(q\)-analogs of multiple harmonic (star) sums.NEWLINENEWLINE10. Multiple zeta star values.NEWLINENEWLINE11. \(q\)-analogs of multiple zeta functions.NEWLINENEWLINE12. \(q\)-analogs of multiple zeta (star) values.NEWLINENEWLINE13. Colored multiple zeta values.NEWLINENEWLINE14. Colored multiple zeta values at lower levels.NEWLINENEWLINE15. Application to Feynman integrals.NEWLINENEWLINEEach chapter is accompanied by historical notes and exercises. At the end of the book, 6 appendixes are given, the last of them is devoted to answers to some exercises.NEWLINENEWLINEThe bibliography contains 644 references. / rank
 
Normal rank
Property / reviewed by
 
Property / reviewed by: Renata Macaitienė / rank
 
Normal rank

Latest revision as of 09:28, 23 May 2025

scientific article; zbMATH DE number 6560232
Language Label Description Also known as
English
Multiple zeta functions, multiple polylogarithms and their special values
scientific article; zbMATH DE number 6560232

    Statements

    0 references
    24 March 2016
    0 references
    multiple zeta functions
    0 references
    multiple polylogarithms
    0 references
    colored multiple zeta values
    0 references
    Multiple zeta functions, multiple polylogarithms and their special values (English)
    0 references
    The book is a very good introduction to the theory of multiple zeta functions and multiple polylogarithms and their special values. It covers the majority of the results in the field since Euler until our days.NEWLINENEWLINELet \(d\in\mathbb{N}\) and \(\underline{s}=(s_1, \ldots, s_d)\in\mathbb{C}\). The multiple zeta function of depth \(d\) is defined by NEWLINE\[NEWLINE \zeta(\underline{s})= \sum_{k_1> \cdots >k_d>0} k_1^{-s_1}\cdots k_d^{-s_d}, NEWLINE\]NEWLINE \(\mathrm{Re}(s_1+ \cdots + s_j)>j\) for all \(j=1, \dots, d\). If the sum runs over \(k_1\geq \cdots \geq k_d>0\), then we have the multiple zeta star function \(\zeta^*(\underline{s})\).NEWLINENEWLINESuppose that \(s_1, \dots, s_d\in \mathbb{N}\) and \(\underline{x} = (x_1, \dots x_d)\in \mathbb{C}^d\) such that \(|\prod_{j=1}^l x_j|<1\) for all \(j=1, \dots, d\). The multiple polylogarithm of depth \(d\) is defined by NEWLINE\[NEWLINE \text{Li}_{s_1, \dots, s_d}(\underline{x})= \sum_{k_1> \cdots > k_d\geq 1} {{x_1^{k_1}\cdots x_d^{k_d}}\over{k_1^{s_1}\cdots k_d^{s_d}}}. NEWLINE\]NEWLINE The multiple zeta values are the convergent special values of the multiple zeta functions at positive integers. Multiple zeta star values are defined similarly.NEWLINENEWLINELet \(\mu=\exp(2\pi \sqrt{-1}/N)\). A colored multiple zeta value of level \(N\) is a number NEWLINE\[NEWLINE L_n(s_1, \dots, s_d| i_1, \dots, i_d) = \text{Li}_{s_1, \dots, s_d}(\mu^{i_1}, \dots \mu^{i_d}). NEWLINE\]NEWLINENEWLINENEWLINEThe book is divided into 15 chapters:NEWLINENEWLINE1. Multiple zeta functions.NEWLINENEWLINE2. Multiple polylogarithms.NEWLINENEWLINE3. Multiple zeta values.NEWLINENEWLINE4. Drinfeld associator and single-valued multiple zeta values.NEWLINENEWLINE5. Multiple zeta value identities.NEWLINENEWLINE6. Symmetrized multiple zeta values.NEWLINENEWLINE7. Multiple harmonic sums and alternating version.NEWLINENEWLINE8. Finite multiple zeta values and finite Euler sums.NEWLINENEWLINE9. \(q\)-analogs of multiple harmonic (star) sums.NEWLINENEWLINE10. Multiple zeta star values.NEWLINENEWLINE11. \(q\)-analogs of multiple zeta functions.NEWLINENEWLINE12. \(q\)-analogs of multiple zeta (star) values.NEWLINENEWLINE13. Colored multiple zeta values.NEWLINENEWLINE14. Colored multiple zeta values at lower levels.NEWLINENEWLINE15. Application to Feynman integrals.NEWLINENEWLINEEach chapter is accompanied by historical notes and exercises. At the end of the book, 6 appendixes are given, the last of them is devoted to answers to some exercises.NEWLINENEWLINEThe bibliography contains 644 references.
    0 references

    Identifiers