Resonance problems for the \(p\)-Laplacian with a nonlinear boundary condition (Q2492484): Difference between revisions

From MaRDI portal
ReferenceBot (talk | contribs)
Changed an Item
Import recommendations run Q6767936
 
(One intermediate revision by one other user not shown)
Property / DOI
 
Property / DOI: 10.1016/j.na.2005.07.035 / rank
Normal rank
 
Property / DOI
 
Property / DOI: 10.1016/J.NA.2005.07.035 / rank
 
Normal rank
Property / Recommended article
 
Property / Recommended article: Q5507020 / rank
 
Normal rank
Property / Recommended article: Q5507020 / qualifier
 
Similarity Score: 0.96574795
Amount0.96574795
Unit1
Property / Recommended article: Q5507020 / qualifier
 
Property / Recommended article
 
Property / Recommended article: Resonance problems for the \(p\)-Laplacian / rank
 
Normal rank
Property / Recommended article: Resonance problems for the \(p\)-Laplacian / qualifier
 
Similarity Score: 0.962592
Amount0.962592
Unit1
Property / Recommended article: Resonance problems for the \(p\)-Laplacian / qualifier
 
Property / Recommended article
 
Property / Recommended article: Resonance problems for \(p\)-Laplacian / rank
 
Normal rank
Property / Recommended article: Resonance problems for \(p\)-Laplacian / qualifier
 
Similarity Score: 0.95883334
Amount0.95883334
Unit1
Property / Recommended article: Resonance problems for \(p\)-Laplacian / qualifier
 
Property / Recommended article
 
Property / Recommended article: Resonance problems for the \(p\)-Laplacian systems / rank
 
Normal rank
Property / Recommended article: Resonance problems for the \(p\)-Laplacian systems / qualifier
 
Similarity Score: 0.95305026
Amount0.95305026
Unit1
Property / Recommended article: Resonance problems for the \(p\)-Laplacian systems / qualifier
 
Property / Recommended article
 
Property / Recommended article: Q4804257 / rank
 
Normal rank
Property / Recommended article: Q4804257 / qualifier
 
Similarity Score: 0.9506705
Amount0.9506705
Unit1
Property / Recommended article: Q4804257 / qualifier
 
Property / Recommended article
 
Property / Recommended article: Resonant \(p\)-Laplacian problems with functional boundary conditions / rank
 
Normal rank
Property / Recommended article: Resonant \(p\)-Laplacian problems with functional boundary conditions / qualifier
 
Similarity Score: 0.9486174
Amount0.9486174
Unit1
Property / Recommended article: Resonant \(p\)-Laplacian problems with functional boundary conditions / qualifier
 
Property / Recommended article
 
Property / Recommended article: Q3368507 / rank
 
Normal rank
Property / Recommended article: Q3368507 / qualifier
 
Similarity Score: 0.94782025
Amount0.94782025
Unit1
Property / Recommended article: Q3368507 / qualifier
 
Property / Recommended article
 
Property / Recommended article: Q4796978 / rank
 
Normal rank
Property / Recommended article: Q4796978 / qualifier
 
Similarity Score: 0.9459672
Amount0.9459672
Unit1
Property / Recommended article: Q4796978 / qualifier
 
Property / Recommended article
 
Property / Recommended article: Q3516675 / rank
 
Normal rank
Property / Recommended article: Q3516675 / qualifier
 
Similarity Score: 0.9433466
Amount0.9433466
Unit1
Property / Recommended article: Q3516675 / qualifier
 
Property / Recommended article
 
Property / Recommended article: Q3811031 / rank
 
Normal rank
Property / Recommended article: Q3811031 / qualifier
 
Similarity Score: 0.9413538
Amount0.9413538
Unit1
Property / Recommended article: Q3811031 / qualifier
 

Latest revision as of 19:09, 5 May 2025

scientific article
Language Label Description Also known as
English
Resonance problems for the \(p\)-Laplacian with a nonlinear boundary condition
scientific article

    Statements

    Resonance problems for the \(p\)-Laplacian with a nonlinear boundary condition (English)
    0 references
    0 references
    0 references
    9 June 2006
    0 references
    Consider the following problem \[ \begin{cases} & \Delta_p u =| u| ^{p-2}u-g_1(u)+h_1(x),\;\;\text{in}\;\Omega\\ & | \nabla u| ^{p-2}\frac{\partial u}{\partial \nu} =\lambda | u| ^{p-2}u+g_2(u)+h_2(x),\;\;\text{on}\;\partial \Omega \end{cases}\eqno(1) \] where \(\Omega\) is a bounded domain in \(\mathbb R^N\) with smooth boundary, \(-\Delta_p u=-\text{div}(| \nabla u| ^{p-2}\nabla u)\) is the \(p\)-Laplacian with \(p>1\), the perturbation \(g_1,g_2 \in C(\mathbb R,\mathbb R), h_1(x)\in L^{p'}(\Omega), h_2(x)\in L^{p'}(\partial \Omega)\) \((p'=p/(p-1))\). Under the Landesman-Lazer type conditions, using a variational method, the authors prove the existence of weak solutions for (1) in \(W^{1,p}(\Omega)\). This paper is a continuation of the article by \textit{P. Drábek} and \textit{S. B. Robinson} [J. Funct. Anal. 169, No. 1, 189--200 (1999; Zbl 0940.35087)], and of one by \textit{S. Martinez} and \textit{J. D. Rossi} [ Electron. J. Differ. Equ. 2003, Paper No. 27, 14 p., electronic only (2003; Zbl 1033.35078)].
    0 references
    \(p\)-Laplacian
    0 references
    nonlinear boundary condition
    0 references
    resonance
    0 references
    G-link
    0 references
    Sobolev trace inequality
    0 references
    Landesman-Lazer type condition
    0 references

    Identifiers