The André-Oort conjecture for \(\mathcal A_g\) (Q1698037): Difference between revisions

From MaRDI portal
ReferenceBot (talk | contribs)
Changed an Item
Import recommendations run Q6534273
 
(One intermediate revision by one other user not shown)
Property / DOI
 
Property / DOI: 10.4007/annals.2018.187.2.2 / rank
Normal rank
 
Property / DOI
 
Property / DOI: 10.4007/ANNALS.2018.187.2.2 / rank
 
Normal rank
Property / Recommended article
 
Property / Recommended article: The André–Oort conjecture for the moduli space of abelian surfaces / rank
 
Normal rank
Property / Recommended article: The André–Oort conjecture for the moduli space of abelian surfaces / qualifier
 
Similarity Score: 0.8081882
Amount0.8081882
Unit1
Property / Recommended article: The André–Oort conjecture for the moduli space of abelian surfaces / qualifier
 
Property / Recommended article
 
Property / Recommended article: Q5242621 / rank
 
Normal rank
Property / Recommended article: Q5242621 / qualifier
 
Similarity Score: 0.77121586
Amount0.77121586
Unit1
Property / Recommended article: Q5242621 / qualifier
 
Property / Recommended article
 
Property / Recommended article: Ax-Lindemann for \(\mathcal{A}_g\) / rank
 
Normal rank
Property / Recommended article: Ax-Lindemann for \(\mathcal{A}_g\) / qualifier
 
Similarity Score: 0.7546282
Amount0.7546282
Unit1
Property / Recommended article: Ax-Lindemann for \(\mathcal{A}_g\) / qualifier
 
Property / Recommended article
 
Property / Recommended article: Local André-Oort conjecture for the universal abelian variety / rank
 
Normal rank
Property / Recommended article: Local André-Oort conjecture for the universal abelian variety / qualifier
 
Similarity Score: 0.7360138
Amount0.7360138
Unit1
Property / Recommended article: Local André-Oort conjecture for the universal abelian variety / qualifier
 
Property / Recommended article
 
Property / Recommended article: On the averaged Colmez conjecture / rank
 
Normal rank
Property / Recommended article: On the averaged Colmez conjecture / qualifier
 
Similarity Score: 0.7343617
Amount0.7343617
Unit1
Property / Recommended article: On the averaged Colmez conjecture / qualifier
 
Property / Recommended article
 
Property / Recommended article: Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites Galoisiennes de points spéciaux / rank
 
Normal rank
Property / Recommended article: Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites Galoisiennes de points spéciaux / qualifier
 
Similarity Score: 0.73130006
Amount0.73130006
Unit1
Property / Recommended article: Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites Galoisiennes de points spéciaux / qualifier
 
Property / Recommended article
 
Property / Recommended article: The André-Oort conjecture / rank
 
Normal rank
Property / Recommended article: The André-Oort conjecture / qualifier
 
Similarity Score: 0.7300143
Amount0.7300143
Unit1
Property / Recommended article: The André-Oort conjecture / qualifier
 
Property / Recommended article
 
Property / Recommended article: The André-Oort conjecture via o-minimality / rank
 
Normal rank
Property / Recommended article: The André-Oort conjecture via o-minimality / qualifier
 
Similarity Score: 0.7290076
Amount0.7290076
Unit1
Property / Recommended article: The André-Oort conjecture via o-minimality / qualifier
 
Property / Recommended article
 
Property / Recommended article: The existence of an abelian variety over \(\overline{\mathbb{Q}}\) isogenous to no Jacobian / rank
 
Normal rank
Property / Recommended article: The existence of an abelian variety over \(\overline{\mathbb{Q}}\) isogenous to no Jacobian / qualifier
 
Similarity Score: 0.7134747
Amount0.7134747
Unit1
Property / Recommended article: The existence of an abelian variety over \(\overline{\mathbb{Q}}\) isogenous to no Jacobian / qualifier
 
Property / Recommended article
 
Property / Recommended article: Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture / rank
 
Normal rank
Property / Recommended article: Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture / qualifier
 
Similarity Score: 0.7131642
Amount0.7131642
Unit1
Property / Recommended article: Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture / qualifier
 

Latest revision as of 19:56, 27 January 2025

scientific article
Language Label Description Also known as
English
The André-Oort conjecture for \(\mathcal A_g\)
scientific article

    Statements

    The André-Oort conjecture for \(\mathcal A_g\) (English)
    0 references
    0 references
    21 February 2018
    0 references
    This paper gives an unconditional proof of the André-Oort conjecture for the moduli space $\mathcal A_g$ of principally polarized abelian varieties, which asserts that an irreducible closed algebraic subvariety $V$ of $\mathcal A_g$ contains only finitely many maximal special subvarieties. (Here, a special subvariety is a subvariety which is the image of a connected Shimura variety under a morphism coming from a morphism of Shimura data.) \par The main step towards proving this well-known conjecture carried out in the paper at hand is proving the following \par Theorem (cf.~Theorem 1.2). For given $g\ge 1$ there exist constants $\delta_g > 0$ and $\gamma_g > 0$ depending only on $g$ such that if $E$ is a CM field of degree $2g$, $\Phi$ is a primitive CM type for $E$, and $A$ is an abelian variety of dimension $g$ with endomorphism ring equal to the ring of integers of $E$ and CM type $\Phi$, then the field of moduli $\mathbb Q(A)$ of $A$ satisfies \[ \left| \mathbb Q(A) : \mathbb Q \right| \ge \gamma_g \left|\operatorname{Disc}(E)\right|^{\delta_g}. \] \par The key ingredients in the proof are the ``averaged Colmez conjecture'' on the Faltings height of CM abelian varieties proved by Andreatta, Goren, Howard and Madapusi Pera and independently by Xuan and Zhang, and a theorem by Masser and Wüstholz bound the degrees of isogenies between such abelian varieties. \par It was proved in [\textit{J. Pila} and \textit{J. Tsimerman}, Ann. Math. (2) 179, No. 2, 659--681 (2014; Zbl 1305.14020)] that this implies the André-Oort conjecture using, among other results, the theory of $o$-minimality and in particular a theorem by Pila and Wilkie on the growth of the number of points of bounded heights in definable sets. See Section 6 of the paper at hand for a sketch of the proof strategy. \par Previously, the André-Oort conjecture had been proved under the assumption of the Generalized Riemann Hypothesis by Klingler, Ullmo and Yafaev ([\textit{B. Klingler} and \textit{A. Yafaev}, Ann. Math. (2) 180, No. 3, 867--925 (2014; Zbl 1377.11073); \textit{E. Ullmo} and \textit{A. Yafaev}, Ann. Math. (2) 180, No. 3, 823--865 (2014; Zbl 1328.11070)]) and also in the above-mentioned paper by Pila and Tsimerman.
    0 references
    0 references
    André-Oort conjecture for Siegel moduli space
    0 references
    complex multiplication
    0 references
    Faltings height
    0 references
    Colmez conjecture
    0 references

    Identifiers