Optimal covariance change point localization in high dimensions (Q97725): Difference between revisions
From MaRDI portal
Created a new Item |
Changed an Item |
||||||||||||||
| Property / DOI | |||||||||||||||
| Property / DOI: 10.3150/20-BEJ1249 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / publication date | |||||||||||||||
7 December 2020
| |||||||||||||||
| Property / publication date: 7 December 2020 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / author | |||||||||||||||
| Property / author: Daren Wang / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / author | |||||||||||||||
| Property / author: Yi Yu / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / author | |||||||||||||||
| Property / author: Alessandro Rinaldo / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / title | |||||||||||||||
Optimal covariance change point localization in high dimensions (English) | |||||||||||||||
| Property / title: Optimal covariance change point localization in high dimensions (English) / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / zbMATH Open document ID | |||||||||||||||
| Property / zbMATH Open document ID: 1479.62077 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / full work available at URL | |||||||||||||||
| Property / full work available at URL: https://arxiv.org/abs/1712.09912 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / full work available at URL | |||||||||||||||
| Property / full work available at URL: https://projecteuclid.org/euclid.bj/1605841255 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / review text | |||||||||||||||
Statistical change point analysis is concerned with identifying abrupt changes in the data that are due to actual changes in the underlying distribution. One of the main goals in the analysis is the estimation of the localization (i.e. positions of the change points). The paper under review studies the problem of change point localization in a time series of length \(n\) of independent \(p\)-dimensional random vectors with covariance matrices that are piecewise constant, and only change at unknown times. Here all the parameters quantifying the difficulty of the problem (namely the dimension \(p\), the minimal spacing, the minimal jump size, and the sub-Gaussian variance factor) change with the sample size \(n\). The authors review related literature and then propose and analyze two algorithms for covariance change point localization. Under suitable conditions it is proved that both algorithms can consistently estimate the change points. As to localization rate, the first algorithm is sub-optimal (that exhibits an unfavorable dependence on the dimension \(p\)), while the second algorithm (under a set of different and milder assumptions) yields almost minimax rate-optima. As a phase transition effect over the space of the model parameters demonstrates, ``it delivers optimal performance over nearly all scalings, for which consistent localization is possible''. | |||||||||||||||
| Property / review text: Statistical change point analysis is concerned with identifying abrupt changes in the data that are due to actual changes in the underlying distribution. One of the main goals in the analysis is the estimation of the localization (i.e. positions of the change points). The paper under review studies the problem of change point localization in a time series of length \(n\) of independent \(p\)-dimensional random vectors with covariance matrices that are piecewise constant, and only change at unknown times. Here all the parameters quantifying the difficulty of the problem (namely the dimension \(p\), the minimal spacing, the minimal jump size, and the sub-Gaussian variance factor) change with the sample size \(n\). The authors review related literature and then propose and analyze two algorithms for covariance change point localization. Under suitable conditions it is proved that both algorithms can consistently estimate the change points. As to localization rate, the first algorithm is sub-optimal (that exhibits an unfavorable dependence on the dimension \(p\)), while the second algorithm (under a set of different and milder assumptions) yields almost minimax rate-optima. As a phase transition effect over the space of the model parameters demonstrates, ``it delivers optimal performance over nearly all scalings, for which consistent localization is possible''. / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / reviewed by | |||||||||||||||
| Property / reviewed by: Q590814 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / Mathematics Subject Classification ID | |||||||||||||||
| Property / Mathematics Subject Classification ID: 62M10 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / Mathematics Subject Classification ID | |||||||||||||||
| Property / Mathematics Subject Classification ID: 62H15 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / Mathematics Subject Classification ID | |||||||||||||||
| Property / Mathematics Subject Classification ID: 62G10 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / Mathematics Subject Classification ID | |||||||||||||||
| Property / Mathematics Subject Classification ID: 62G20 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / zbMATH DE Number | |||||||||||||||
| Property / zbMATH DE Number: 7282861 / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / zbMATH Keywords | |||||||||||||||
binary segmentation | |||||||||||||||
| Property / zbMATH Keywords: binary segmentation / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / zbMATH Keywords | |||||||||||||||
change point detection | |||||||||||||||
| Property / zbMATH Keywords: change point detection / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / zbMATH Keywords | |||||||||||||||
high-dimensional covariance testing | |||||||||||||||
| Property / zbMATH Keywords: high-dimensional covariance testing / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / zbMATH Keywords | |||||||||||||||
independent projection | |||||||||||||||
| Property / zbMATH Keywords: independent projection / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / zbMATH Keywords | |||||||||||||||
minimax optimal | |||||||||||||||
| Property / zbMATH Keywords: minimax optimal / rank | |||||||||||||||
Normal rank | |||||||||||||||
| Property / zbMATH Keywords | |||||||||||||||
wild binary segmentation | |||||||||||||||
| Property / zbMATH Keywords: wild binary segmentation / rank | |||||||||||||||
Normal rank | |||||||||||||||
Revision as of 18:24, 1 August 2023
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Optimal covariance change point localization in high dimensions |
scientific article |
Statements
27
0 references
1
0 references
1 February 2021
0 references
7 December 2020
0 references
Optimal covariance change point localization in high dimensions (English)
0 references
Statistical change point analysis is concerned with identifying abrupt changes in the data that are due to actual changes in the underlying distribution. One of the main goals in the analysis is the estimation of the localization (i.e. positions of the change points). The paper under review studies the problem of change point localization in a time series of length \(n\) of independent \(p\)-dimensional random vectors with covariance matrices that are piecewise constant, and only change at unknown times. Here all the parameters quantifying the difficulty of the problem (namely the dimension \(p\), the minimal spacing, the minimal jump size, and the sub-Gaussian variance factor) change with the sample size \(n\). The authors review related literature and then propose and analyze two algorithms for covariance change point localization. Under suitable conditions it is proved that both algorithms can consistently estimate the change points. As to localization rate, the first algorithm is sub-optimal (that exhibits an unfavorable dependence on the dimension \(p\)), while the second algorithm (under a set of different and milder assumptions) yields almost minimax rate-optima. As a phase transition effect over the space of the model parameters demonstrates, ``it delivers optimal performance over nearly all scalings, for which consistent localization is possible''.
0 references
binary segmentation
0 references
change point detection
0 references
high-dimensional covariance testing
0 references
independent projection
0 references
minimax optimal
0 references
wild binary segmentation
0 references