Quantum Lindblad Equation (Q6534317): Difference between revisions

From MaRDI portal
MathModDB (talk | contribs)
Created a new Item
 
MathModDB (talk | contribs)
Changed label, description and/or aliases in en, and other parts
aliases / en / 0aliases / en / 0
 
Gorini–Kossakowski–Sudarshan–Lindblad Equation
Property / defining formula

ddtρ=i[H,ρ]+i=1N21γi(LiρLi12[LiLi,ρ]+)

\frac{\mathrm d}{\mathrm{d}t}\rho=-\frac{\mathrm i}\hbar[H,\rho]+\sum _{i=1}^{N^2-1}\gamma_i\left(L_i\rho L_i^\dagger-\frac12[L_i^\dagger L_i,\rho]_+\right)
 
Property / defining formula: ddtρ=i[H,ρ]+i=1N21γi(LiρLi12[LiLi,ρ]+) / rank
Normal rank
 
Property / in defining formula
 

i

\mathrm{i}
Property / in defining formula: i / rank
 
Normal rank
Property / in defining formula: i / qualifier
 
Property / defining formula
 

ddtρ=i[H,ρ]+k=1N21γk(LkρLk12[LkLk,ρ]+)

\frac{\mathrm d}{\mathrm{d}t}\rho=-\frac{\mathrm i}\hbar[H,\rho]+\sum _{k=1}^{N^2-1}\gamma_k\left(L_k\rho L_k^\dagger-\frac12[L_k^\dagger L_k,\rho]_+\right)
Property / defining formula: ddtρ=i[H,ρ]+k=1N21γk(LkρLk12[LkLk,ρ]+) / rank
 
Normal rank
Property / contains
 
Property / contains: Detailed Balance Principle / rank
 
Normal rank
Property / contains
 
Property / contains: Quantum Hamiltonian (Electric Charge) / rank
 
Normal rank
Property / Wikidata QID
 
Property / Wikidata QID: Q4476520 / rank
 
Normal rank

Revision as of 14:07, 24 February 2025

describes open system quantum dynamics including dissipation and/or decoherence
  • Gorini–Kossakowski–Sudarshan–Lindblad Equation
Language Label Description Also known as
English
Quantum Lindblad Equation
describes open system quantum dynamics including dissipation and/or decoherence
  • Gorini–Kossakowski–Sudarshan–Lindblad Equation

Statements

Markovian quantum master equation for the evolution of quantum mechanical density matrices (pure or mixed states). It generalizes the Schrödinger equation to open quantum systems; that is, systems in contacts with their surroundings. The resulting dynamics is no longer unitary, but still satisfies the property of being trace-preserving and completely positive for any initial condition
0 references
0 references
ddtρ=i[H,ρ]+k=1N21γk(LkρLk12[LkLk,ρ]+)
0 references

Identifiers

0 references