The \(\text{K}\)-theory of perfectoid rings (Q2099422): Difference between revisions

From MaRDI portal
Import IPFS CIDs
Import recommendations run Q6767936
Property / Recommended article
 
Property / Recommended article: The Perfekt theory of $M$-ideals / rank
 
Normal rank
Property / Recommended article: The Perfekt theory of $M$-ideals / qualifier
 
Similarity Score: 0.9236632
Amount0.9236632
Unit1
Property / Recommended article: The Perfekt theory of $M$-ideals / qualifier
 
Property / Recommended article
 
Property / Recommended article: K-theory of coherent rings / rank
 
Normal rank
Property / Recommended article: K-theory of coherent rings / qualifier
 
Similarity Score: 0.9227217
Amount0.9227217
Unit1
Property / Recommended article: K-theory of coherent rings / qualifier
 
Property / Recommended article
 
Property / Recommended article: K-theory of n-coherent rings / rank
 
Normal rank
Property / Recommended article: K-theory of n-coherent rings / qualifier
 
Similarity Score: 0.9223018
Amount0.9223018
Unit1
Property / Recommended article: K-theory of n-coherent rings / qualifier
 
Property / Recommended article
 
Property / Recommended article: \(K\)-theory of rings with idempotents / rank
 
Normal rank
Property / Recommended article: \(K\)-theory of rings with idempotents / qualifier
 
Similarity Score: 0.92164576
Amount0.92164576
Unit1
Property / Recommended article: \(K\)-theory of rings with idempotents / qualifier
 
Property / Recommended article
 
Property / Recommended article: Q4027061 / rank
 
Normal rank
Property / Recommended article: Q4027061 / qualifier
 
Similarity Score: 0.9216456
Amount0.9216456
Unit1
Property / Recommended article: Q4027061 / qualifier
 
Property / Recommended article
 
Property / Recommended article: Q4733980 / rank
 
Normal rank
Property / Recommended article: Q4733980 / qualifier
 
Similarity Score: 0.9205972
Amount0.9205972
Unit1
Property / Recommended article: Q4733980 / qualifier
 
Property / Recommended article
 
Property / Recommended article: Equivariant<i>K</i>-theory of rings / rank
 
Normal rank
Property / Recommended article: Equivariant<i>K</i>-theory of rings / qualifier
 
Similarity Score: 0.9192235
Amount0.9192235
Unit1
Property / Recommended article: Equivariant<i>K</i>-theory of rings / qualifier
 
Property / Recommended article
 
Property / Recommended article: On the \(K\)-theory of finite algebras over Witt vectors of perfect fields / rank
 
Normal rank
Property / Recommended article: On the \(K\)-theory of finite algebras over Witt vectors of perfect fields / qualifier
 
Similarity Score: 0.916638
Amount0.916638
Unit1
Property / Recommended article: On the \(K\)-theory of finite algebras over Witt vectors of perfect fields / qualifier
 
Property / Recommended article
 
Property / Recommended article: \(K_0\)-theory of \(n\)-potents in rings and algebras / rank
 
Normal rank
Property / Recommended article: \(K_0\)-theory of \(n\)-potents in rings and algebras / qualifier
 
Similarity Score: 0.9158402
Amount0.9158402
Unit1
Property / Recommended article: \(K_0\)-theory of \(n\)-potents in rings and algebras / qualifier
 
Property / Recommended article
 
Property / Recommended article: <i>K</i>-theory of valuation rings / rank
 
Normal rank
Property / Recommended article: <i>K</i>-theory of valuation rings / qualifier
 
Similarity Score: 0.9148442
Amount0.9148442
Unit1
Property / Recommended article: <i>K</i>-theory of valuation rings / qualifier
 

Revision as of 03:46, 8 May 2025

scientific article
Language Label Description Also known as
English
The \(\text{K}\)-theory of perfectoid rings
scientific article

    Statements

    The \(\text{K}\)-theory of perfectoid rings (English)
    0 references
    0 references
    0 references
    0 references
    23 November 2022
    0 references
    Summary: We establish various properties of the \(p\)-adic algebraic \(\text{K}\)-theory of smooth algebras over perfectoid rings living over perfectoid valuation rings. In particular, the \(p\)-adic \(\text{K}\)-theory of such rings is homotopy invariant, and coincides with the \(p\)-adic \(\text{K}\)-theory of the \(p\)-adic generic fibre in high degrees. In the case of smooth algebras over perfectoid valuation rings of mixed characteristic the latter isomorphism holds in all degrees and generalises a result of Nizioł.
    0 references
    algebraic \(K\)-theory
    0 references
    perfectoid rings
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers