DLMF:29.8.E7 (Q9403): Difference between revisions

From MaRDI portal
Changed an Item: Add constraint
Changed an Item: Add constraint
Property / Symbols used
 
Property / Symbols used: real parameter / rank
 
Normal rank
Property / Symbols used: real parameter / qualifier
 
DLMF defining formula:

k 𝑘 {\displaystyle{\displaystyle k}}

k
Property / Symbols used: real parameter / qualifier
 
xml-id: C29.S1.XMD8.m1edec

Revision as of 02:09, 22 December 2021

No description defined
Language Label Description Also known as
English
DLMF:29.8.E7
No description defined

    Statements

    𝐸𝑐 ν 2 m + 1 ( z 1 , k 2 ) w 2 ( K ) + w 2 ( - K ) w 2 ( 0 ) = - k 2 sn ( z 1 , k ) - K K sn ( z , k ) d 𝖯 ν ( y ) d y 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) d z , Lame-Ec 2 𝑚 1 𝜈 subscript 𝑧 1 superscript 𝑘 2 subscript 𝑤 2 complete-elliptic-integral-first-kind-K 𝑘 subscript 𝑤 2 complete-elliptic-integral-first-kind-K 𝑘 subscript 𝑤 2 0 superscript 𝑘 2 Jacobi-elliptic-sn subscript 𝑧 1 𝑘 superscript subscript complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-first-kind-K 𝑘 Jacobi-elliptic-sn 𝑧 𝑘 derivative shorthand-Ferrers-Legendre-P-first-kind 𝜈 𝑦 𝑦 Lame-Ec 2 𝑚 1 𝜈 𝑧 superscript 𝑘 2 𝑧 {\displaystyle{\displaystyle\mathit{Ec}^{2m+1}_{\nu}\left(z_{1},k^{2}\right)% \frac{w_{2}(K)+w_{2}(-K)}{w_{2}(0)}=-k^{2}\operatorname{sn}\left(z_{1},k\right% )\int_{-K}^{K}\operatorname{sn}\left(z,k\right)\frac{\mathrm{d}\mathsf{P}_{\nu% }\left(y\right)}{\mathrm{d}y}\mathit{Ec}^{2m+1}_{\nu}\left(z,k^{2}\right)% \mathrm{d}z,}}
    0 references
    sn ( z , k ) Jacobi-elliptic-sn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{sn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E4.m2aadec
    0 references
    𝐸𝑐 ν m ( z , k 2 ) Lame-Ec 𝑚 𝜈 𝑧 superscript 𝑘 2 {\displaystyle{\displaystyle\mathit{Ec}^{\NVar{m}}_{\NVar{\nu}}\left(\NVar{z},% \NVar{k^{2}}\right)}}
    C29.S3.SS4.p1.m5aadec
    0 references
    K ( k ) complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle K\left(\NVar{k}\right)}}
    C19.S2.E8.m1acdec
    0 references
    d f d x derivative 𝑓 𝑥 {\displaystyle{\displaystyle\frac{\mathrm{d}\NVar{f}}{\mathrm{d}\NVar{x}}}}
    C1.S4.E4.m2aadec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1abdec
    0 references
    {\displaystyle{\displaystyle\int}}
    C1.S4.SS4.m3abdec
    0 references
    𝖯 ν ( x ) = 𝖯 ν 0 ( x ) shorthand-Ferrers-Legendre-P-first-kind 𝜈 𝑥 Ferrers-Legendre-P-first-kind 0 𝜈 𝑥 {\displaystyle{\displaystyle\mathsf{P}_{\NVar{\nu}}\left(\NVar{x}\right)=% \mathsf{P}^{0}_{\nu}\left(x\right)}}
    C14.S2.SS2.p2.m2abdec
    0 references
    m 𝑚 {\displaystyle{\displaystyle m}}
    C29.S1.XMD1.m1adec
    0 references
    y 𝑦 {\displaystyle{\displaystyle y}}
    C29.S1.XMD5.m1bdec
    0 references
    z 𝑧 {\displaystyle{\displaystyle z}}
    C29.S1.XMD6.m1edec
    0 references
    k 𝑘 {\displaystyle{\displaystyle k}}
    C29.S1.XMD8.m1edec
    0 references

    Identifiers