Introducing \texttt{libeemd}: a program package for performing the ensemble empirical mode decomposition
From MaRDI portal
Publication:736642
DOI10.1007/S00180-015-0603-9zbMATH Open1342.65045arXiv1707.00487OpenAlexW3099618244WikidataQ62444160 ScholiaQ62444160MaRDI QIDQ736642
Author name not available (Why is that?)
Publication date: 4 August 2016
Published in: (Search for Journal in Brave)
Abstract: The ensemble empirical mode decomposition (EEMD) and its complete variant (CEEMDAN) are adaptive, noise-assisted data analysis methods that improve on the ordinary empirical mode decomposition (EMD). All these methods decompose possibly nonlinear and/or nonstationary time series data into a finite amount of components separated by instantaneous frequencies. This decomposition provides a powerful method to look into the different processes behind a given time series data, and provides a way to separate short time-scale events from a general trend. We present a free software implementation of EMD, EEMD and CEEMDAN and give an overview of the EMD methodology and the algorithms used in the decomposition. We release our implementation, libeemd, with the aim of providing a user-friendly, fast, stable, well-documented and easily extensible EEMD library for anyone interested in using (E)EMD in the analysis of time series data. While written in C for numerical efficiency, our implementation includes interfaces to the Python and R languages, and interfaces to other languages are straightforward.
Full work available at URL: https://arxiv.org/abs/1707.00487
No records found.
No records found.
This page was built for publication: Introducing \texttt{libeemd}: a program package for performing the ensemble empirical mode decomposition
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q736642)