Sobolev extension domains on metric spaces of homogeneous type. (Q595811)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Sobolev extension domains on metric spaces of homogeneous type. |
scientific article; zbMATH DE number 2083994
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Sobolev extension domains on metric spaces of homogeneous type. |
scientific article; zbMATH DE number 2083994 |
Statements
Sobolev extension domains on metric spaces of homogeneous type. (English)
0 references
6 August 2004
0 references
The author proves that there exists a bounded linear extension operator \[ \text{Ext}: M^{1,p}(\Omega,d,\mu)\to M^{1,p}(\Omega, d,\mu) \] such that \(\text{Ext}(u)|_\Omega= u\), where \(M^{1,p}(\Omega,d,\mu)\) is the Hajlasz space. Here, \((X,d,\mu)\) is a metric measure space of homogeneous type with a finite measure.
0 references
extension operator
0 references
metric spaces of homogeneous type
0 references