The following pages link to An inverse of Sanov's theorem (Q1284067):
Displaying 13 items.
- Large deviations for estimators of some threshold parameters (Q257485) (← links)
- Large deviations for posterior distributions on the parameter of a multivariate \(\mathrm{AR}(p)\) process (Q379990) (← links)
- Extension of some large deviation results for posterior distributions (Q397200) (← links)
- A note on convergence rates for posterior distributions via large deviations techniques (Q451400) (← links)
- Large deviations for estimators of unknown probabilities, with applications in risk theory (Q617998) (← links)
- Asymptotic equivalence of empirical likelihood and Bayesian MAP (Q834346) (← links)
- An inverse Sanov theorem for exponential families (Q2112257) (← links)
- Risk processes with shot noise Cox claim number process and reserve dependent premium rate (Q2276212) (← links)
- Censored Exponential Data: Large Deviations for MLEs and Posterior Distributions (Q3396349) (← links)
- Moderate Deviations for Bayes Posteriors (Q4416169) (← links)
- The Large Deviations of Estimating Rate Functions (Q5312856) (← links)
- Large deviation results on some estimators for stationary Gaussian processes (Q5400836) (← links)
- How to estimate the rate function of a cumulative process (Q5476147) (← links)