Pages that link to "Item:Q2021107"
From MaRDI portal
The following pages link to Geometric deep learning for computational mechanics. I: Anisotropic hyperelasticity (Q2021107):
Displaying 50 items.
- Sobolev training of thermodynamic-informed neural networks for interpretable elasto-plasticity models with level set hardening (Q2021962) (← links)
- Local approximate Gaussian process regression for data-driven constitutive models: development and comparison with neural networks (Q2060125) (← links)
- A representative volume element network (RVE-net) for accelerating RVE analysis, microscale material identification, and defect characterization (Q2072746) (← links)
- Geometric prior of multi-resolution yielding manifolds and the local closest point projection for nearly non-smooth plasticity (Q2083112) (← links)
- Finite electro-elasticity with physics-augmented neural networks (Q2083132) (← links)
- Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks (Q2115570) (← links)
- Enforcing exact physics in scientific machine learning: a data-driven exterior calculus on graphs (Q2133772) (← links)
- Graph neural networks for simulating crack coalescence and propagation in brittle materials (Q2142205) (← links)
- Learning finite element convergence with the multi-fidelity graph neural network (Q2145122) (← links)
- A data-driven approach to full-field nonlinear stress distribution and failure pattern prediction in composites using deep learning (Q2145129) (← links)
- A multiscale, data-driven approach to identifying thermo-mechanically coupled laws -- bottom-up with artificial neural networks (Q2150265) (← links)
- Bayesian-EUCLID: discovering hyperelastic material laws with uncertainties (Q2160432) (← links)
- Data-driven tissue mechanics with polyconvex neural ordinary differential equations (Q2160446) (← links)
- Model-free data-driven simulation of inelastic materials using structured data sets, tangent space information and transition rules (Q2171494) (← links)
- Predicting the mechanical properties of biopolymer gels using neural networks trained on discrete fiber network data (Q2246386) (← links)
- Machine learning constitutive models of elastomeric foams (Q2670325) (← links)
- Integrated finite element neural network (I-FENN) for non-local continuum damage mechanics (Q2678488) (← links)
- Geometric learning for computational mechanics. II: Graph embedding for interpretable multiscale plasticity (Q2678490) (← links)
- Distance-preserving manifold denoising for data-driven mechanics (Q2683440) (← links)
- What Machine Learning Can Do for Computational Solid Mechanics (Q5051038) (← links)
- Learning Invariant Representation of Multiscale Hyperelastic Constitutive Law from Sparse Experimental Data (Q6049615) (← links)
- Material modeling for parametric, anisotropic finite strain hyperelasticity based on machine learning with application in optimization of metamaterials (Q6061746) (← links)
- Advanced discretization techniques for hyperelastic physics-augmented neural networks (Q6062433) (← links)
- A mechanics‐informed artificial neural network approach in data‐driven constitutive modeling (Q6069980) (← links)
- Molecular dynamics inferred transfer learning models for finite‐strain hyperelasticity of monoclinic crystals: Sobolev training and validations against physical constraints (Q6070057) (← links)
- A comparative study on different neural network architectures to model inelasticity (Q6082629) (← links)
- A neural kernel method for capturing multiscale high-dimensional micromorphic plasticity of materials with internal structures (Q6084451) (← links)
- On the use of graph neural networks and shape‐function‐based gradient computation in the deep energy method (Q6092138) (← links)
- Geometric learning for computational mechanics. III: Physics-constrained response surface of geometrically nonlinear shells (Q6096461) (← links)
- Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations (Q6097591) (← links)
- \(\mathrm{FE^{ANN}}\): an efficient data-driven multiscale approach based on physics-constrained neural networks and automated data mining (Q6101611) (← links)
- Incompressible rubber thermoelasticity: a neural network approach (Q6101617) (← links)
- Neural network-based multiscale modeling of finite strain magneto-elasticity with relaxed convexity criteria (Q6121688) (← links)
- Discovering interpretable elastoplasticity models via the neural polynomial method enabled symbolic regressions (Q6125484) (← links)
- Deep learning and multi-level featurization of graph representations of microstructural data (Q6159319) (← links)
- Nonlinear electro-elastic finite element analysis with neural network constitutive models (Q6497139) (← links)
- Peridynamic neural operators: a data-driven nonlocal constitutive model for complex material responses (Q6497150) (← links)
- I-FENN with temporal convolutional networks: expediting the load-history analysis of non-local gradient damage propagation (Q6497179) (← links)
- Meshless physics-informed deep learning method for three-dimensional solid mechanics (Q6554056) (← links)
- A microstructure-based graph neural network for accelerating multiscale simulations (Q6557762) (← links)
- N-adaptive Ritz method: a neural network enriched partition of unity for boundary value problems (Q6566038) (← links)
- Multiscale graph neural networks with adaptive mesh refinement for accelerating mesh-based simulations (Q6588310) (← links)
- Physics-constrained symbolic model discovery for polyconvex incompressible hyperelastic materials (Q6589318) (← links)
- A thermodynamics-informed neural network for elastoplastic constitutive modeling of granular materials (Q6595912) (← links)
- Deep learning in computational mechanics: a review (Q6604128) (← links)
- Unsupervised machine learning classification for accelerating \(\mathrm{FE}^2\) multiscale fracture simulations (Q6641844) (← links)
- Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response (Q6641865) (← links)
- Viscoelasticty with physics-augmented neural networks: model formulation and training methods without prescribed internal variables (Q6661941) (← links)
- Non-intrusive parametric hyper-reduction for nonlinear structural finite element formulations (Q6669042) (← links)
- Machine-learning-based virtual fields method: application to anisotropic hyperelasticity (Q6669068) (← links)