Pages that link to "Item:Q2376257"
From MaRDI portal
The following pages link to On the superintegrability of TTW model (Q2376257):
Displaying 17 items.
- Dynamics on the cone: Closed orbits and superintegrability (Q307071) (← links)
- Superintegrable systems on spaces of constant curvature (Q530782) (← links)
- A unified approach to quantum and classical TTW systems based on factorizations (Q530821) (← links)
- On superintegrable systems separable in Cartesian coordinates (Q1632768) (← links)
- The Post-Winternitz system on spherical and hyperbolic spaces: a proof of the superintegrability making use of complex functions and a curvature-dependent formalism (Q1681103) (← links)
- The anisotropic oscillator on curved spaces: a exactly solvable model (Q1700953) (← links)
- Suslov problem with the Clebsch-Tisserand potential (Q1799402) (← links)
- Integrable generalizations of oscillator and Coulomb systems via action-angle variables (Q1933158) (← links)
- More on superintegrable models on spaces of constant curvature (Q2093118) (← links)
- On the superintegrability of TTW model (Q2376257) (← links)
- Superintegrable generalizations of the Kepler and Hook problems (Q2513979) (← links)
- Are all classical superintegrable systems in two-dimensional space linearizable? (Q2963299) (← links)
- Fourth-order superintegrable systems separating in polar coordinates. II. Standard potentials (Q3120053) (← links)
- Superintegrable deformations of superintegrable systems: Quadratic superintegrability and higher-order superintegrability (Q5250081) (← links)
- Quasi-bi-Hamiltonian structures, complex functions and superintegrability: the Tremblay–Turbiner–Winternitz (TTW) and the Post–Winternitz (PW) systems (Q5357474) (← links)
- Transformation of the Stäckel matrices preserving superintegrability (Q5379388) (← links)
- Superintegrability and deformed oscillator realizations of quantum TTW Hamiltonians on constant-curvature manifolds and with reflections in a plane (Q6561795) (← links)