Pages that link to "Item:Q2415337"
From MaRDI portal
The following pages link to Algebraic structure of classical field theory: kinematics and linearized dynamics for real scalar fields (Q2415337):
Displaying 21 items.
- Quantum gravity from the point of view of locally covariant quantum field theory (Q303752) (← links)
- Functional properties of Hörmander's space of distributions having a specified wavefront set (Q462895) (← links)
- Homotopy colimits and global observables in abelian gauge theory (Q493996) (← links)
- The Calabi complex and Killing sheaf cohomology (Q508067) (← links)
- Unitary inequivalence in classical systems (Q516351) (← links)
- The generalised principle of perturbative agreement and the thermal mass (Q517416) (← links)
- Poisson algebras for non-linear field theories in the Cahiers topos (Q529609) (← links)
- The Casimir effect from the point of view of algebraic quantum field theory (Q1663373) (← links)
- Deciphering the algebraic CPT theorem (Q2008997) (← links)
- Algebraic field theory operads and linear quantization (Q2011181) (← links)
- C*-algebraic approach to interacting quantum field theory: inclusion of Fermi fields (Q2089901) (← links)
- The star product in interacting quantum field theory (Q2190783) (← links)
- Lorentzian 2D CFT from the pAQFT perspective (Q2674954) (← links)
- The unitary Master Ward Identity: time slice axiom, Noether's theorem and anomalies (Q2697504) (← links)
- Quantum field theory on curved spacetimes: axiomatic framework and examples (Q2798661) (← links)
- On covariant Poisson brackets in classical field theory (Q3450553) (← links)
- Covariant variational evolution and Jacobi brackets: Particles (Q4971728) (← links)
- The algebra of Wick polynomials of a scalar field on a Riemannian manifold (Q5149204) (← links)
- Locality and causality in perturbative algebraic quantum field theory (Q5218764) (← links)
- Møller maps for Dirac fields in external backgrounds (Q6585231) (← links)
- Non-trivial bundles and algebraic classical field theory (Q6593089) (← links)