Formula:2069

From MaRDI portal

Digital Library of Mathematical Functions ID 4.23.E42

gd - 1 ( x ) = ln tan ( 1 2 x + 1 4 π ) = ln ( sec x + tan x ) = arcsinh ( tan x ) = arccsch ( cot x ) = arccosh ( sec x ) = arcsech ( cos x ) = arctanh ( sin x ) = arccoth ( csc x ) . inverse-Gudermannian 𝑥 1 2 𝑥 1 4 𝜋 𝑥 𝑥 hyperbolic-inverse-sine 𝑥 hyperbolic-inverse-cosecant 𝑥 hyperbolic-inverse-cosine 𝑥 hyperbolic-inverse-secant 𝑥 hyperbolic-inverse-tangent 𝑥 hyperbolic-inverse-cotangent 𝑥 {\displaystyle{\displaystyle{\operatorname{gd}^{-1}}\left(x\right)=\ln\tan% \left(\tfrac{1}{2}x+\tfrac{1}{4}\pi\right)=\ln\left(\sec x+\tan x\right)=% \operatorname{arcsinh}\left(\tan x\right)=\operatorname{arccsch}\left(\cot x% \right)=\operatorname{arccosh}\left(\sec x\right)=\operatorname{arcsech}\left(% \cos x\right)=\operatorname{arctanh}\left(\sin x\right)=\operatorname{arccoth}% \left(\csc x\right).}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.