DLMF:8.4.E15

From MaRDI portal


MaRDI QIDQ3207

  • Label: DLMF:8.4.E15


Digital Library of Mathematical Functions ID 8.4.E15

Γ ( - n , z ) = ( - 1 ) n n ! ( E 1 ( z ) - e - z k = 0 n - 1 ( - 1 ) k k ! z k + 1 ) = ( - 1 ) n n ! ( ψ ( n + 1 ) - ln z ) - z - n k = 0 k n ( - z ) k k ! ( k - n ) . incomplete-Gamma 𝑛 𝑧 superscript 1 𝑛 𝑛 exponential-integral 𝑧 superscript 𝑒 𝑧 superscript subscript 𝑘 0 𝑛 1 superscript 1 𝑘 𝑘 superscript 𝑧 𝑘 1 superscript 1 𝑛 𝑛 digamma 𝑛 1 𝑧 superscript 𝑧 𝑛 superscript subscript 𝑘 0 𝑘 𝑛 superscript 𝑧 𝑘 𝑘 𝑘 𝑛 {\displaystyle{\displaystyle\Gamma\left(-n,z\right)=\frac{(-1)^{n}}{n!}\left(E% _{1}\left(z\right)-e^{-z}\sum_{k=0}^{n-1}\frac{(-1)^{k}k!}{z^{k+1}}\right)=% \frac{(-1)^{n}}{n!}\left(\psi\left(n+1\right)-\ln z\right)-z^{-n}\sum_{% \begin{subarray}{c}k=0\\ k\neq n\end{subarray}}^{\infty}\frac{(-z)^{k}}{k!(k-n)}.}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.