Formula:4168

From MaRDI portal

Digital Library of Mathematical Functions ID 10.23.E17

Y n ( z ) = - n ! ( 1 2 z ) - n π k = 0 n - 1 ( 1 2 z ) k J k ( z ) k ! ( n - k ) + 2 π ( ln ( 1 2 z ) - ψ ( n + 1 ) ) J n ( z ) - 2 π k = 1 ( - 1 ) k ( n + 2 k ) J n + 2 k ( z ) k ( n + k ) , Bessel-Y-Weber 𝑛 𝑧 𝑛 superscript 1 2 𝑧 𝑛 𝜋 superscript subscript 𝑘 0 𝑛 1 superscript 1 2 𝑧 𝑘 Bessel-J 𝑘 𝑧 𝑘 𝑛 𝑘 2 𝜋 1 2 𝑧 digamma 𝑛 1 Bessel-J 𝑛 𝑧 2 𝜋 superscript subscript 𝑘 1 superscript 1 𝑘 𝑛 2 𝑘 Bessel-J 𝑛 2 𝑘 𝑧 𝑘 𝑛 𝑘 {\displaystyle{\displaystyle Y_{n}\left(z\right)=-\frac{n!(\tfrac{1}{2}z)^{-n}% }{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}J_{k}\left(z\right)}{k!(n-k)}+% \frac{2}{\pi}\left(\ln\left(\tfrac{1}{2}z\right)-\psi\left(n+1\right)\right)J_% {n}\left(z\right)-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)J_{n+2k}% \left(z\right)}{k(n+k)},}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.