Formula:4550

From MaRDI portal

Digital Library of Mathematical Functions ID 10.67.E8

bei ν x e x / 2 ( 2 π x ) 1 2 k = 0 b k ( ν ) x k sin ( x 2 + ( ν 2 + 3 k 4 + 1 8 ) π ) + 1 π ( cos ( 2 ν π ) ker ν x - sin ( 2 ν π ) kei ν x ) . asymptotic-expansion diffop Kelvin-bei 𝜈 1 𝑥 superscript 𝑒 𝑥 2 superscript 2 𝜋 𝑥 1 2 superscript subscript 𝑘 0 subscript 𝑏 𝑘 𝜈 superscript 𝑥 𝑘 𝑥 2 𝜈 2 3 𝑘 4 1 8 𝜋 1 𝜋 2 𝜈 𝜋 diffop Kelvin-ker 𝜈 1 𝑥 2 𝜈 𝜋 diffop Kelvin-kei 𝜈 1 𝑥 {\displaystyle{\displaystyle\operatorname{bei}_{\nu}'x\sim\frac{e^{x/\sqrt{2}}% }{(2\pi x)^{\frac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{b_{k}(\nu)}{x^{k}}\sin% \left(\frac{x}{\sqrt{2}}+\left(\frac{\nu}{2}+\frac{3k}{4}+\frac{1}{8}\right)% \pi\right)+\frac{1}{\pi}(\cos\left(2\nu\pi\right)\operatorname{ker}_{\nu}'x-% \sin\left(2\nu\pi\right)\operatorname{kei}_{\nu}'x).}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.