Formula:5764

From MaRDI portal

Digital Library of Mathematical Functions ID 15.8.E10

𝐅 ⁑ ( a , b a + b + m ; z ) = 1 Ξ“ ⁑ ( a + m ) ⁒ Ξ“ ⁑ ( b + m ) ⁒ βˆ‘ k = 0 m - 1 ( a ) k ⁒ ( b ) k ⁒ ( m - k - 1 ) ! k ! ⁒ ( z - 1 ) k - ( z - 1 ) m Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ βˆ‘ k = 0 ∞ ( a + m ) k ⁒ ( b + m ) k k ! ⁒ ( k + m ) ! ⁒ ( 1 - z ) k ⁒ ( ln ⁑ ( 1 - z ) - ψ ⁑ ( k + 1 ) - ψ ⁑ ( k + m + 1 ) + ψ ⁑ ( a + k + m ) + ψ ⁑ ( b + k + m ) ) , scaled-hypergeometric-bold-F π‘Ž 𝑏 π‘Ž 𝑏 π‘š 𝑧 1 Euler-Gamma π‘Ž π‘š Euler-Gamma 𝑏 π‘š superscript subscript π‘˜ 0 π‘š 1 subscript π‘Ž π‘˜ subscript 𝑏 π‘˜ π‘š π‘˜ 1 π‘˜ superscript 𝑧 1 π‘˜ superscript 𝑧 1 π‘š Euler-Gamma π‘Ž Euler-Gamma 𝑏 superscript subscript π‘˜ 0 subscript π‘Ž π‘š π‘˜ subscript 𝑏 π‘š π‘˜ π‘˜ π‘˜ π‘š superscript 1 𝑧 π‘˜ 1 𝑧 digamma π‘˜ 1 digamma π‘˜ π‘š 1 digamma π‘Ž π‘˜ π‘š digamma 𝑏 π‘˜ π‘š {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop a+b+m};z\right)=\frac{1}% {\Gamma\left(a+m\right)\Gamma\left(b+m\right)}\sum_{k=0}^{m-1}\frac{(a)_{k}(b)% _{k}(m-k-1)!}{k!}(z-1)^{k}-\frac{(z-1)^{m}}{\Gamma\left(a\right)\Gamma\left(b% \right)}\sum_{k=0}^{\infty}\frac{(a+m)_{k}(b+m)_{k}}{k!(k+m)!}(1-z)^{k}\*\left% (\ln\left(1-z\right)-\psi\left(k+1\right)-\psi\left(k+m+1\right)+\psi\left(a+k% +m\right)+\psi\left(b+k+m\right)\right),}}


Constraint(s)

| z - 1 | < 1 , | ph ⁑ ( 1 - z ) | < Ο€ formulae-sequence 𝑧 1 1 phase 1 𝑧 πœ‹ {\displaystyle{\displaystyle|z-1|<1,|\operatorname{ph}\left(1-z\right)|<\pi}}

Symbols List

Resources that cite this formula

No records found.