Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Merge two items
In other projects
MaRDI portal item
Discussion
View source
View history
Purge
English
Log in
Formula
:
5903
From MaRDI portal
Jump to:
navigation
,
search
Digital Library of Mathematical Functions ID
16.4.E12
(
a
-
d
)
(
b
-
d
)
(
c
-
d
)
(
F
2
3
(
a
,
b
,
c
d
+
1
,
e
;
1
)
-
F
2
3
(
a
,
b
,
c
d
,
e
;
1
)
)
+
a
b
c
F
2
3
(
a
,
b
,
c
d
,
e
;
1
)
=
d
(
d
-
1
)
(
a
+
b
+
c
-
d
-
e
+
1
)
(
F
2
3
(
a
,
b
,
c
d
,
e
;
1
)
-
F
2
3
(
a
,
b
,
c
d
-
1
,
e
;
1
)
)
,
𝑎
𝑑
𝑏
𝑑
𝑐
𝑑
Gauss-hypergeometric-pFq
3
2
𝑎
𝑏
𝑐
𝑑
1
𝑒
1
Gauss-hypergeometric-pFq
3
2
𝑎
𝑏
𝑐
𝑑
𝑒
1
𝑎
𝑏
𝑐
Gauss-hypergeometric-pFq
3
2
𝑎
𝑏
𝑐
𝑑
𝑒
1
𝑑
𝑑
1
𝑎
𝑏
𝑐
𝑑
𝑒
1
Gauss-hypergeometric-pFq
3
2
𝑎
𝑏
𝑐
𝑑
𝑒
1
Gauss-hypergeometric-pFq
3
2
𝑎
𝑏
𝑐
𝑑
1
𝑒
1
{\displaystyle{\displaystyle(a-d)(b-d)(c-d)\left({{}_{3}F_{2}}\left({a,b,c% \atop d+1,e};1\right)-{{}_{3}F_{2}}\left({a,b,c\atop d,e};1\right)\right)+abc{% {}_{3}F_{2}}\left({a,b,c\atop d,e};1\right)=d(d-1)(a+b+c-d-e+1)\left({{}_{3}F_% {2}}\left({a,b,c\atop d,e};1\right)-{{}_{3}F_{2}}\left({a,b,c\atop d-1,e};1% \right)\right),}}
Constraint(s)
Symbols List
F
q
p
(
a
1
,
…
,
a
p
;
b
1
,
…
,
b
q
;
z
)
Gauss-hypergeometric-pFq
𝑝
𝑞
subscript
𝑎
1
…
subscript
𝑎
𝑝
subscript
𝑏
1
…
subscript
𝑏
𝑞
𝑧
{\displaystyle{\displaystyle{{}_{\NVar{p}}F_{\NVar{q}}}\left(\NVar{a_{1},\dots% ,a_{p}};\NVar{b_{1},\dots,b_{q}};\NVar{z}\right)}}
: alternatively F q p ( a ; b ; z ) or F q p ( a b ; z ) generalized hypergeometric function
a
𝑎
{\displaystyle{\displaystyle a}}
: real or complex parameters
b
𝑏
{\displaystyle{\displaystyle b}}
: real or complex parameters
c
𝑐
{\displaystyle{\displaystyle c}}
: real or complex parameters
d
𝑑
{\displaystyle{\displaystyle d}}
: real or complex parameters
e
𝑒
{\displaystyle{\displaystyle e}}
: real or complex parameters
Resources that cite this formula
No records found.
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information