Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in
Formula
:
6049
From MaRDI portal
Jump to:
navigation
,
search
Digital Library of Mathematical Functions ID
17.4.E3
ψ
s
r
(
a
1
,
a
2
,
…
,
a
r
b
1
,
b
2
,
…
,
b
s
;
q
,
z
)
=
ψ
s
r
(
a
1
,
a
2
,
…
,
a
r
;
b
1
,
b
2
,
…
,
b
s
;
q
,
z
)
=
∑
n
=
-
∞
∞
(
a
1
,
a
2
,
…
,
a
r
;
q
)
n
(
-
1
)
(
s
-
r
)
n
q
(
s
-
r
)
(
n
2
)
z
n
(
b
1
,
b
2
,
…
,
b
s
;
q
)
n
=
∑
n
=
0
∞
(
a
1
,
a
2
,
…
,
a
r
;
q
)
n
(
-
1
)
(
s
-
r
)
n
q
(
s
-
r
)
(
n
2
)
z
n
(
b
1
,
b
2
,
…
,
b
s
;
q
)
n
+
∑
n
=
1
∞
(
q
/
b
1
,
q
/
b
2
,
…
,
q
/
b
s
;
q
)
n
(
q
/
a
1
,
q
/
a
2
,
…
,
q
/
a
r
;
q
)
n
(
b
1
b
2
⋯
b
s
a
1
a
2
⋯
a
r
z
)
n
.
q-hypergeometric-rpsis
𝑟
𝑠
subscript
𝑎
1
subscript
𝑎
2
…
subscript
𝑎
𝑟
subscript
𝑏
1
subscript
𝑏
2
…
subscript
𝑏
𝑠
𝑞
𝑧
q-hypergeometric-rpsis
𝑟
𝑠
subscript
𝑎
1
subscript
𝑎
2
…
subscript
𝑎
𝑟
subscript
𝑏
1
subscript
𝑏
2
…
subscript
𝑏
𝑠
𝑞
𝑧
superscript
subscript
𝑛
q-multiple-Pochhammer
subscript
𝑎
1
subscript
𝑎
2
…
subscript
𝑎
𝑟
𝑞
𝑛
superscript
1
𝑠
𝑟
𝑛
superscript
𝑞
𝑠
𝑟
binomial
𝑛
2
superscript
𝑧
𝑛
q-multiple-Pochhammer
subscript
𝑏
1
subscript
𝑏
2
…
subscript
𝑏
𝑠
𝑞
𝑛
superscript
subscript
𝑛
0
q-multiple-Pochhammer
subscript
𝑎
1
subscript
𝑎
2
…
subscript
𝑎
𝑟
𝑞
𝑛
superscript
1
𝑠
𝑟
𝑛
superscript
𝑞
𝑠
𝑟
binomial
𝑛
2
superscript
𝑧
𝑛
q-multiple-Pochhammer
subscript
𝑏
1
subscript
𝑏
2
…
subscript
𝑏
𝑠
𝑞
𝑛
superscript
subscript
𝑛
1
q-multiple-Pochhammer
𝑞
subscript
𝑏
1
𝑞
subscript
𝑏
2
…
𝑞
subscript
𝑏
𝑠
𝑞
𝑛
q-multiple-Pochhammer
𝑞
subscript
𝑎
1
𝑞
subscript
𝑎
2
…
𝑞
subscript
𝑎
𝑟
𝑞
𝑛
superscript
subscript
𝑏
1
subscript
𝑏
2
⋯
subscript
𝑏
𝑠
subscript
𝑎
1
subscript
𝑎
2
⋯
subscript
𝑎
𝑟
𝑧
𝑛
{\displaystyle{\displaystyle{{}_{r}\psi_{s}}\left({a_{1},a_{2},\dots,a_{r}% \atop b_{1},b_{2},\dots,b_{s}};q,z\right)={{}_{r}\psi_{s}}\left(a_{1},a_{2},% \dots,a_{r};b_{1},b_{2},\dots,b_{s};q,z\right)=\sum_{n=-\infty}^{\infty}\frac{% \left(a_{1},a_{2},\dots,a_{r};q\right)_{n}(-1)^{(s-r)n}q^{(s-r)\genfrac{(}{)}{% 0.0pt}{}{n}{2}}z^{n}}{\left(b_{1},b_{2},\dots,b_{s};q\right)_{n}}=\sum_{n=0}^{% \infty}\frac{\left(a_{1},a_{2},\dots,a_{r};q\right)_{n}(-1)^{(s-r)n}q^{(s-r)% \genfrac{(}{)}{0.0pt}{}{n}{2}}z^{n}}{\left(b_{1},b_{2},\dots,b_{s};q\right)_{n% }}+\sum_{n=1}^{\infty}\frac{\left(q/b_{1},q/b_{2},\dots,q/b_{s};q\right)_{n}}{% \left(q/a_{1},q/a_{2},\dots,q/a_{r};q\right)_{n}}\left(\frac{b_{1}b_{2}\cdots b% _{s}}{a_{1}a_{2}\cdots a_{r}z}\right)^{n}.}}
Constraint(s)
Symbols List
(
m
n
)
binomial
𝑚
𝑛
{\displaystyle{\displaystyle\genfrac{(}{)}{0.0pt}{}{\NVar{m}}{\NVar{n}}}}
:
(
a
1
,
a
2
,
…
,
a
r
;
q
)
n
q-multiple-Pochhammer
subscript
𝑎
1
subscript
𝑎
2
…
subscript
𝑎
𝑟
𝑞
𝑛
{\displaystyle{\displaystyle\left(\NVar{a_{1},a_{2},\dots,a_{r}};\NVar{q}% \right)_{\NVar{n}}}}
:
q
𝑞
{\displaystyle{\displaystyle q}}
: complex base
n
𝑛
{\displaystyle{\displaystyle n}}
: nonnegative integer
r
𝑟
{\displaystyle{\displaystyle r}}
: nonnegative integer
s
𝑠
{\displaystyle{\displaystyle s}}
: nonnegative integer
z
𝑧
{\displaystyle{\displaystyle z}}
: complex variable
Resources that cite this formula
No records found.
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item