Formula:6090

From MaRDI portal

Digital Library of Mathematical Functions ID 17.6.E26

π’Ÿ q n ⁒ ( ( z ; q ) ∞ ( a ⁒ b ⁒ z / c ; q ) ∞ ⁒ Ο• 1 2 ⁑ ( a , b c ; q , z ) ) = ( c / a , c / b ; q ) n ( c ; q ) n ⁒ ( 1 - q ) n ⁒ ( a ⁒ b c ) n ⁒ ( z ⁒ q n ; q ) ∞ ( a ⁒ b ⁒ z / c ; q ) ∞ ⁒ Ο• 1 2 ⁑ ( a , b c ⁒ q n ; q , z ⁒ q n ) . superscript subscript π’Ÿ π‘ž 𝑛 q-Pochhammer-symbol 𝑧 π‘ž q-Pochhammer-symbol π‘Ž 𝑏 𝑧 𝑐 π‘ž q-hypergeometric-rphis 2 1 π‘Ž 𝑏 𝑐 π‘ž 𝑧 q-multiple-Pochhammer 𝑐 π‘Ž 𝑐 𝑏 π‘ž 𝑛 q-Pochhammer-symbol 𝑐 π‘ž 𝑛 superscript 1 π‘ž 𝑛 superscript π‘Ž 𝑏 𝑐 𝑛 q-Pochhammer-symbol 𝑧 superscript π‘ž 𝑛 π‘ž q-Pochhammer-symbol π‘Ž 𝑏 𝑧 𝑐 π‘ž q-hypergeometric-rphis 2 1 π‘Ž 𝑏 𝑐 superscript π‘ž 𝑛 π‘ž 𝑧 superscript π‘ž 𝑛 {\displaystyle{\displaystyle\mathcal{D}_{q}^{n}\left(\frac{\left(z;q\right)_{% \infty}}{\left(abz/c;q\right)_{\infty}}{{}_{2}\phi_{1}}\left({a,b\atop c};q,z% \right)\right)=\frac{\left(c/a,c/b;q\right)_{n}}{\left(c;q\right)_{n}(1-q)^{n}% }\left(\frac{ab}{c}\right)^{n}\frac{\left(zq^{n};q\right)_{\infty}}{\left(abz/% c;q\right)_{\infty}}{{}_{2}\phi_{1}}\left({a,b\atop cq^{n}};q,zq^{n}\right).}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.