Formula:6153

From MaRDI portal

Digital Library of Mathematical Functions ID 17.11.E4

m 1 , , m n 0 ( a ; q ) m 1 + m 2 + + m n ( b 1 ; q ) m 1 ( b 2 ; q ) m 2 ( b n ; q ) m n x 1 m 1 x 2 m 2 x n m n ( q ; q ) m 1 ( q ; q ) m 2 ( q ; q ) m n ( c ; q ) m 1 + m 2 + + m n = ( a , b 1 x 1 , b 2 x 2 , , b n x n ; q ) ( c , x 1 , x 2 , , x n ; q ) ϕ n n + 1 ( c / a , x 1 , x 2 , , x n b 1 x 1 , b 2 x 2 , , b n x n ; q , a ) . subscript subscript 𝑚 1 subscript 𝑚 𝑛 0 q-Pochhammer-symbol 𝑎 𝑞 subscript 𝑚 1 subscript 𝑚 2 subscript 𝑚 𝑛 q-Pochhammer-symbol subscript 𝑏 1 𝑞 subscript 𝑚 1 q-Pochhammer-symbol subscript 𝑏 2 𝑞 subscript 𝑚 2 q-Pochhammer-symbol subscript 𝑏 𝑛 𝑞 subscript 𝑚 𝑛 superscript subscript 𝑥 1 subscript 𝑚 1 superscript subscript 𝑥 2 subscript 𝑚 2 superscript subscript 𝑥 𝑛 subscript 𝑚 𝑛 q-Pochhammer-symbol 𝑞 𝑞 subscript 𝑚 1 q-Pochhammer-symbol 𝑞 𝑞 subscript 𝑚 2 q-Pochhammer-symbol 𝑞 𝑞 subscript 𝑚 𝑛 q-Pochhammer-symbol 𝑐 𝑞 subscript 𝑚 1 subscript 𝑚 2 subscript 𝑚 𝑛 q-multiple-Pochhammer 𝑎 subscript 𝑏 1 subscript 𝑥 1 subscript 𝑏 2 subscript 𝑥 2 subscript 𝑏 𝑛 subscript 𝑥 𝑛 𝑞 q-multiple-Pochhammer 𝑐 subscript 𝑥 1 subscript 𝑥 2 subscript 𝑥 𝑛 𝑞 q-hypergeometric-rphis 𝑛 1 𝑛 𝑐 𝑎 subscript 𝑥 1 subscript 𝑥 2 subscript 𝑥 𝑛 subscript 𝑏 1 subscript 𝑥 1 subscript 𝑏 2 subscript 𝑥 2 subscript 𝑏 𝑛 subscript 𝑥 𝑛 𝑞 𝑎 {\displaystyle{\displaystyle\sum_{m_{1},\dots,m_{n}\geqq 0}\frac{\left(a;q% \right)_{m_{1}+m_{2}+\cdots+m_{n}}\left(b_{1};q\right)_{m_{1}}\left(b_{2};q% \right)_{m_{2}}\cdots\left(b_{n};q\right)_{m_{n}}x_{1}^{m_{1}}x_{2}^{m_{2}}% \cdots x_{n}^{m_{n}}}{\left(q;q\right)_{m_{1}}\left(q;q\right)_{m_{2}}\cdots% \left(q;q\right)_{m_{n}}\left(c;q\right)_{m_{1}+m_{2}+\cdots+m_{n}}}=\frac{% \left(a,b_{1}x_{1},b_{2}x_{2},\dots,b_{n}x_{n};q\right)_{\infty}}{\left(c,x_{1% },x_{2},\dots,x_{n};q\right)_{\infty}}{{}_{n+1}\phi_{n}}\left({c/a,x_{1},x_{2}% ,\dots,x_{n}\atop b_{1}x_{1},b_{2}x_{2},\dots,b_{n}x_{n}};q,a\right).}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.