DLMF:17.14.E2

From MaRDI portal
Formula:6168


MaRDI QIDQ6168

  • Label: DLMF:17.14.E2


Digital Library of Mathematical Functions ID 17.14.E2

n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( - q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( - z q ; q 2 ) ( - z - 1 q ; q 2 ) ( q 2 ; q 2 ) ( z - 1 q 2 ; q 2 ) ( - q ; q 2 ) ( z - 1 q ; q 2 ) = 1 ( - q ; q 2 )  coeff. of  z 0  in  ( - z q ; q 2 ) ( - z - 1 q ; q 2 ) ( q 2 ; q 2 ) ( z - 1 q ; q ) = H ( q ) ( - q ; q 2 ) , superscript subscript 𝑛 0 superscript 𝑞 𝑛 𝑛 1 q-Pochhammer-symbol superscript 𝑞 2 superscript 𝑞 2 𝑛 q-Pochhammer-symbol 𝑞 superscript 𝑞 2 𝑛 1  coeff. of  superscript 𝑧 0  in  q-Pochhammer-symbol 𝑧 𝑞 superscript 𝑞 2 q-Pochhammer-symbol superscript 𝑧 1 𝑞 superscript 𝑞 2 q-Pochhammer-symbol superscript 𝑞 2 superscript 𝑞 2 q-Pochhammer-symbol superscript 𝑧 1 superscript 𝑞 2 superscript 𝑞 2 q-Pochhammer-symbol 𝑞 superscript 𝑞 2 q-Pochhammer-symbol superscript 𝑧 1 𝑞 superscript 𝑞 2 1 q-Pochhammer-symbol 𝑞 superscript 𝑞 2  coeff. of  superscript 𝑧 0  in  q-Pochhammer-symbol 𝑧 𝑞 superscript 𝑞 2 q-Pochhammer-symbol superscript 𝑧 1 𝑞 superscript 𝑞 2 q-Pochhammer-symbol superscript 𝑞 2 superscript 𝑞 2 q-Pochhammer-symbol superscript 𝑧 1 𝑞 𝑞 𝐻 𝑞 q-Pochhammer-symbol 𝑞 superscript 𝑞 2 {\displaystyle{\displaystyle\sum_{n=0}^{\infty}\frac{q^{n(n+1)}}{\left(q^{2};q% ^{2}\right)_{n}\left(-q;q^{2}\right)_{n+1}}=\mbox{ coeff. of }z^{0}\mbox{ in }% \frac{\left(-zq;q^{2}\right)_{\infty}\left(-z^{-1}q;q^{2}\right)_{\infty}\left% (q^{2};q^{2}\right)_{\infty}}{\left(z^{-1}q^{2};q^{2}\right)_{\infty}\left(-q;% q^{2}\right)_{\infty}\left(z^{-1}q;q^{2}\right)_{\infty}}=\frac{1}{\left(-q;q^% {2}\right)_{\infty}}\mbox{ coeff. of }z^{0}\mbox{ in }\frac{\left(-zq;q^{2}% \right)_{\infty}\left(-z^{-1}q;q^{2}\right)_{\infty}\left(q^{2};q^{2}\right)_{% \infty}}{\left(z^{-1}q;q\right)_{\infty}}=\frac{H(q)}{\left(-q;q^{2}\right)_{% \infty}},}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.