Formula:6212

From MaRDI portal

Digital Library of Mathematical Functions ID 18.5.E7

P n ( α , β ) ( x ) = = 0 n ( n + α + β + 1 ) ( α + + 1 ) n - ! ( n - ) ! ( x - 1 2 ) = ( α + 1 ) n n ! F 1 2 ( - n , n + α + β + 1 α + 1 ; 1 - x 2 ) , Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝑥 superscript subscript 0 𝑛 Pochhammer 𝑛 𝛼 𝛽 1 Pochhammer 𝛼 1 𝑛 𝑛 superscript 𝑥 1 2 Pochhammer 𝛼 1 𝑛 𝑛 Gauss-hypergeometric-F-as-2F1 𝑛 𝑛 𝛼 𝛽 1 𝛼 1 1 𝑥 2 {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=\sum_{\ell=0% }^{n}\frac{{\left(n+\alpha+\beta+1\right)_{\ell}}{\left(\alpha+\ell+1\right)_{% n-\ell}}}{\ell!\;(n-\ell)!}\left(\frac{x-1}{2}\right)^{\ell}=\frac{{\left(% \alpha+1\right)_{n}}}{n!}{{}_{2}F_{1}}\left({-n,n+\alpha+\beta+1\atop\alpha+1}% ;\frac{1-x}{2}\right),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.