Formula:6331

From MaRDI portal

Digital Library of Mathematical Functions ID 18.10.E10

H n ( x ) = ( - 2 i ) n e x 2 π 1 2 - e - t 2 t n e 2 i x t d t = 2 n + 1 π 1 2 e x 2 0 e - t 2 t n cos ( 2 x t - 1 2 n π ) d t . Hermite-polynomial-H 𝑛 𝑥 superscript 2 𝑖 𝑛 superscript 𝑒 superscript 𝑥 2 superscript 𝜋 1 2 superscript subscript superscript 𝑒 superscript 𝑡 2 superscript 𝑡 𝑛 superscript 𝑒 2 𝑖 𝑥 𝑡 𝑡 superscript 2 𝑛 1 superscript 𝜋 1 2 superscript 𝑒 superscript 𝑥 2 superscript subscript 0 superscript 𝑒 superscript 𝑡 2 superscript 𝑡 𝑛 2 𝑥 𝑡 1 2 𝑛 𝜋 𝑡 {\displaystyle{\displaystyle H_{n}\left(x\right)=\frac{(-2i)^{n}e^{x^{2}}}{\pi% ^{\frac{1}{2}}}\int_{-\infty}^{\infty}e^{-t^{2}}t^{n}e^{2ixt}\mathrm{d}t=\frac% {2^{n+1}}{\pi^{\frac{1}{2}}}e^{x^{2}}\int_{0}^{\infty}e^{-t^{2}}t^{n}\cos\left% (2xt-\tfrac{1}{2}n\pi\right)\mathrm{d}t.}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.