Formula:6393

From MaRDI portal

Digital Library of Mathematical Functions ID 18.15.E6

( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = Γ ( n + α + 1 ) 2 1 2 ρ α n ! ( θ 1 2 J α ( ρ θ ) m = 0 M A m ( θ ) ρ 2 m + θ 3 2 J α + 1 ( ρ θ ) m = 0 M - 1 B m ( θ ) ρ 2 m + 1 + ε M ( ρ , θ ) ) , superscript 1 2 𝜃 𝛼 1 2 superscript 1 2 𝜃 𝛽 1 2 Jacobi-polynomial-P 𝛼 𝛽 𝑛 𝜃 Euler-Gamma 𝑛 𝛼 1 superscript 2 1 2 superscript 𝜌 𝛼 𝑛 superscript 𝜃 1 2 Bessel-J 𝛼 𝜌 𝜃 superscript subscript 𝑚 0 𝑀 subscript 𝐴 𝑚 𝜃 superscript 𝜌 2 𝑚 superscript 𝜃 3 2 Bessel-J 𝛼 1 𝜌 𝜃 superscript subscript 𝑚 0 𝑀 1 subscript 𝐵 𝑚 𝜃 superscript 𝜌 2 𝑚 1 subscript 𝜀 𝑀 𝜌 𝜃 {\displaystyle{\displaystyle(\sin\tfrac{1}{2}\theta)^{\alpha+\frac{1}{2}}(\cos% \tfrac{1}{2}\theta)^{\beta+\frac{1}{2}}P^{(\alpha,\beta)}_{n}\left(\cos\theta% \right)=\frac{\Gamma\left(n+\alpha+1\right)}{2^{\frac{1}{2}}\rho^{\alpha}n!}\*% \left(\theta^{\frac{1}{2}}J_{\alpha}\left(\rho\theta\right)\sum_{m=0}^{M}% \dfrac{A_{m}(\theta)}{\rho^{2m}}+\theta^{\frac{3}{2}}J_{\alpha+1}\left(\rho% \theta\right)\sum_{m=0}^{M-1}\dfrac{B_{m}(\theta)}{\rho^{2m+1}}+\varepsilon_{M% }(\rho,\theta)\right),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.