Formula:6451

From MaRDI portal

Digital Library of Mathematical Functions ID 18.17.E13

x 1 2 n ( x - 1 ) λ + μ - 1 2 Γ ( λ + μ + 1 2 ) C n ( λ + μ ) ( x - 1 2 ) C n ( λ + μ ) ( 1 ) = 1 x y 1 2 n ( y - 1 ) λ - 1 2 Γ ( λ + 1 2 ) C n ( λ ) ( y - 1 2 ) C n ( λ ) ( 1 ) ( x - y ) μ - 1 Γ ( μ ) d y , superscript 𝑥 1 2 𝑛 superscript 𝑥 1 𝜆 𝜇 1 2 Euler-Gamma 𝜆 𝜇 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝜇 𝑛 superscript 𝑥 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝜇 𝑛 1 superscript subscript 1 𝑥 superscript 𝑦 1 2 𝑛 superscript 𝑦 1 𝜆 1 2 Euler-Gamma 𝜆 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 superscript 𝑦 1 2 ultraspherical-Gegenbauer-polynomial 𝜆 𝑛 1 superscript 𝑥 𝑦 𝜇 1 Euler-Gamma 𝜇 𝑦 {\displaystyle{\displaystyle\frac{x^{\frac{1}{2}n}(x-1)^{\lambda+\mu-\frac{1}{% 2}}}{\Gamma\left(\lambda+\mu+\tfrac{1}{2}\right)}\frac{C^{(\lambda+\mu)}_{n}% \left(x^{-\frac{1}{2}}\right)}{C^{(\lambda+\mu)}_{n}\left(1\right)}=\int_{1}^{% x}\frac{y^{\frac{1}{2}n}(y-1)^{\lambda-\frac{1}{2}}}{\Gamma\left(\lambda+% \tfrac{1}{2}\right)}\frac{C^{(\lambda)}_{n}\left(y^{-\frac{1}{2}}\right)}{C^{(% \lambda)}_{n}\left(1\right)}\frac{(x-y)^{\mu-1}}{\Gamma\left(\mu\right)}% \mathrm{d}y,}}


Constraint(s)

x > 1 𝑥 1 {\displaystyle{\displaystyle x>1}}

Symbols List

Resources that cite this formula

No records found.