Formula:6501

From MaRDI portal

Digital Library of Mathematical Functions ID 18.18.E14

P n ( γ , β ) ( x ) = ( β + 1 ) n ( α + β + 2 ) n = 0 n α + β + 2 + 1 α + β + 1 ( α + β + 1 ) ( n + β + γ + 1 ) ( β + 1 ) ( n + α + β + 2 ) ( γ - α ) n - ( n - ) ! P ( α , β ) ( x ) , Jacobi-polynomial-P 𝛾 𝛽 𝑛 𝑥 Pochhammer 𝛽 1 𝑛 Pochhammer 𝛼 𝛽 2 𝑛 superscript subscript 0 𝑛 𝛼 𝛽 2 1 𝛼 𝛽 1 Pochhammer 𝛼 𝛽 1 Pochhammer 𝑛 𝛽 𝛾 1 Pochhammer 𝛽 1 Pochhammer 𝑛 𝛼 𝛽 2 Pochhammer 𝛾 𝛼 𝑛 𝑛 Jacobi-polynomial-P 𝛼 𝛽 𝑥 {\displaystyle{\displaystyle P^{(\gamma,\beta)}_{n}\left(x\right)=\dfrac{{% \left(\beta+1\right)_{n}}}{{\left(\alpha+\beta+2\right)_{n}}}\sum_{\ell=0}^{n}% \dfrac{\alpha+\beta+2\ell+1}{\alpha+\beta+1}\dfrac{{\left(\alpha+\beta+1\right% )_{\ell}}{\left(n+\beta+\gamma+1\right)_{\ell}}}{{\left(\beta+1\right)_{\ell}}% {\left(n+\alpha+\beta+2\right)_{\ell}}}\dfrac{{\left(\gamma-\alpha\right)_{n-% \ell}}}{(n-\ell)!}P^{(\alpha,\beta)}_{\ell}\left(x\right),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.