Formula:7602

From MaRDI portal

Digital Library of Mathematical Functions ID 21.7.E10

ΞΈ ⁑ ( 𝐳 + ∫ P 1 P 3 𝝎 | 𝛀 ) ⁒ ΞΈ ⁑ ( 𝐳 + ∫ P 2 P 4 𝝎 | 𝛀 ) ⁒ E ⁒ ( P 3 , P 2 ) ⁒ E ⁒ ( P 1 , P 4 ) + ΞΈ ⁑ ( 𝐳 + ∫ P 2 P 3 𝝎 | 𝛀 ) ⁒ ΞΈ ⁑ ( 𝐳 + ∫ P 1 P 4 𝝎 | 𝛀 ) ⁒ E ⁒ ( P 3 , P 1 ) ⁒ E ⁒ ( P 4 , P 2 ) = ΞΈ ⁑ ( 𝐳 | 𝛀 ) ⁒ ΞΈ ⁑ ( 𝐳 + ∫ P 1 P 3 𝝎 + ∫ P 2 P 4 𝝎 | 𝛀 ) ⁒ E ⁒ ( P 1 , P 2 ) ⁒ E ⁒ ( P 3 , P 4 ) , Riemann-theta 𝐳 superscript subscript subscript 𝑃 1 subscript 𝑃 3 𝝎 𝛀 Riemann-theta 𝐳 superscript subscript subscript 𝑃 2 subscript 𝑃 4 𝝎 𝛀 𝐸 subscript 𝑃 3 subscript 𝑃 2 𝐸 subscript 𝑃 1 subscript 𝑃 4 Riemann-theta 𝐳 superscript subscript subscript 𝑃 2 subscript 𝑃 3 𝝎 𝛀 Riemann-theta 𝐳 superscript subscript subscript 𝑃 1 subscript 𝑃 4 𝝎 𝛀 𝐸 subscript 𝑃 3 subscript 𝑃 1 𝐸 subscript 𝑃 4 subscript 𝑃 2 Riemann-theta 𝐳 𝛀 Riemann-theta 𝐳 superscript subscript subscript 𝑃 1 subscript 𝑃 3 𝝎 superscript subscript subscript 𝑃 2 subscript 𝑃 4 𝝎 𝛀 𝐸 subscript 𝑃 1 subscript 𝑃 2 𝐸 subscript 𝑃 3 subscript 𝑃 4 {\displaystyle{\displaystyle\theta\left(\mathbf{z}+\int_{P_{1}}^{P_{3}}% \boldsymbol{{\omega}}\middle|\boldsymbol{{\Omega}}\right)\theta\left(\mathbf{z% }+\int_{P_{2}}^{P_{4}}\boldsymbol{{\omega}}\middle|\boldsymbol{{\Omega}}\right% )E(P_{3},P_{2})E(P_{1},P_{4})+\theta\left(\mathbf{z}+\int_{P_{2}}^{P_{3}}% \boldsymbol{{\omega}}\middle|\boldsymbol{{\Omega}}\right)\theta\left(\mathbf{z% }+\int_{P_{1}}^{P_{4}}\boldsymbol{{\omega}}\middle|\boldsymbol{{\Omega}}\right% )E(P_{3},P_{1})E(P_{4},P_{2})=\theta\left(\mathbf{z}\middle|\boldsymbol{{% \Omega}}\right)\theta\left(\mathbf{z}+\int_{P_{1}}^{P_{3}}\boldsymbol{{\omega}% }+\int_{P_{2}}^{P_{4}}\boldsymbol{{\omega}}\middle|\boldsymbol{{\Omega}}\right% )E(P_{1},P_{2})E(P_{3},P_{4}),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.