Formula:8305

From MaRDI portal

Digital Library of Mathematical Functions ID 25.4.E5

( - 1 ) k ζ ( k ) ( 1 - s ) = 2 ( 2 π ) s m = 0 k r = 0 m ( k m ) ( m r ) ( ( c k - m ) cos ( 1 2 π s ) + ( c k - m ) sin ( 1 2 π s ) ) Γ ( r ) ( s ) ζ ( m - r ) ( s ) , superscript 1 𝑘 Riemann-zeta 𝑘 1 𝑠 2 superscript 2 𝜋 𝑠 superscript subscript 𝑚 0 𝑘 superscript subscript 𝑟 0 𝑚 binomial 𝑘 𝑚 binomial 𝑚 𝑟 superscript 𝑐 𝑘 𝑚 1 2 𝜋 𝑠 superscript 𝑐 𝑘 𝑚 1 2 𝜋 𝑠 Euler-Gamma 𝑟 𝑠 Riemann-zeta 𝑚 𝑟 𝑠 {\displaystyle{\displaystyle(-1)^{k}{\zeta^{(k)}}\left(1-s\right)=\frac{2}{(2% \pi)^{s}}\sum_{m=0}^{k}\sum_{r=0}^{m}\genfrac{(}{)}{0.0pt}{}{k}{m}\genfrac{(}{% )}{0.0pt}{}{m}{r}\left(\Re(c^{k-m})\cos\left(\tfrac{1}{2}\pi s\right)+\Im(c^{k% -m})\sin\left(\tfrac{1}{2}\pi s\right)\right){\Gamma^{(r)}}\left(s\right){% \zeta^{(m-r)}}\left(s\right),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.