Formula:8978

From MaRDI portal

Digital Library of Mathematical Functions ID 28.10.E6

2 π 0 π / 2 sin z sin t cos ( 2 h cos z cos t ) se 2 n + 1 ( t , h 2 ) d t = B 1 2 n + 1 ( h 2 ) 2 se 2 n + 1 ( 1 2 π , h 2 ) se 2 n + 1 ( z , h 2 ) , 2 𝜋 superscript subscript 0 𝜋 2 𝑧 𝑡 2 𝑧 𝑡 Mathieu-se 2 𝑛 1 𝑡 superscript 2 𝑡 superscript subscript 𝐵 1 2 𝑛 1 superscript 2 2 Mathieu-se 2 𝑛 1 1 2 𝜋 superscript 2 Mathieu-se 2 𝑛 1 𝑧 superscript 2 {\displaystyle{\displaystyle\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin z\sin t% \cos\left(2h\cos z\cos t\right)\mathrm{se}_{2n+1}\left(t,h^{2}\right)\mathrm{d% }t=\frac{B_{1}^{2n+1}(h^{2})}{2\mathrm{se}_{2n+1}\left(\frac{1}{2}\pi,h^{2}% \right)}\mathrm{se}_{2n+1}\left(z,h^{2}\right),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.