Formula:8979

From MaRDI portal

Digital Library of Mathematical Functions ID 28.10.E7

2 π 0 π / 2 sin z sin t sin ( 2 h cos z cos t ) se 2 n + 2 ( t , h 2 ) d t = - h B 2 2 n + 2 ( h 2 ) 2 se 2 n + 2 ( 1 2 π , h 2 ) se 2 n + 2 ( z , h 2 ) , 2 𝜋 superscript subscript 0 𝜋 2 𝑧 𝑡 2 𝑧 𝑡 Mathieu-se 2 𝑛 2 𝑡 superscript 2 𝑡 superscript subscript 𝐵 2 2 𝑛 2 superscript 2 2 diffop Mathieu-se 2 𝑛 2 1 1 2 𝜋 superscript 2 Mathieu-se 2 𝑛 2 𝑧 superscript 2 {\displaystyle{\displaystyle\frac{2}{\pi}\int_{0}^{\ifrac{\pi}{2}}\sin z\sin t% \sin\left(2h\cos z\cos t\right)\mathrm{se}_{2n+2}\left(t,h^{2}\right)\mathrm{d% }t=-\frac{hB_{2}^{2n+2}(h^{2})}{2\mathrm{se}_{2n+2}'\left(\frac{1}{2}\pi,h^{2}% \right)}\mathrm{se}_{2n+2}\left(z,h^{2}\right),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.