Formula:9132

From MaRDI portal

Digital Library of Mathematical Functions ID 28.28.E16

0 sin ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = - π A 0 2 n ( h 2 ) 2 ce 2 n ( 1 2 π , h 2 ) ( ce 2 n ( y , h 2 ) 2 π C 2 n ( h 2 ) fe 2 n ( y , h 2 ) ) , superscript subscript 0 2 𝑦 𝑡 modified-Mathieu-Ce 2 𝑛 𝑡 superscript 2 𝑡 𝜋 superscript subscript 𝐴 0 2 𝑛 superscript 2 2 Mathieu-ce 2 𝑛 1 2 𝜋 superscript 2 minus-or-plus Mathieu-ce 2 𝑛 𝑦 superscript 2 2 𝜋 subscript 𝐶 2 𝑛 superscript 2 Mathieu-fe 2 𝑛 𝑦 superscript 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\sin\left(2h\cos y\cosh t\right)% \mathrm{Ce}_{2n}\left(t,h^{2}\right)\mathrm{d}t=-\dfrac{\pi A_{0}^{2n}(h^{2})}% {2\mathrm{ce}_{2n}\left(\frac{1}{2}\pi,h^{2}\right)}\*\left(\mathrm{ce}_{2n}% \left(y,h^{2}\right)\mp\dfrac{2}{\pi C_{2n}(h^{2})}\mathrm{fe}_{2n}\left(y,h^{% 2}\right)\right),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.