Formula:9148

From MaRDI portal

Digital Library of Mathematical Functions ID 28.28.E29

cosh z π 2 0 2 π sin t me ν ( t , h 2 ) me - ν - 2 m - 1 ( t , h 2 ) sinh 2 z + sin 2 t d t = ( - 1 ) m + 1 i h α ν , m ( 0 ) D 1 ( ν , ν + 2 m + 1 , z ) , 𝑧 superscript 𝜋 2 superscript subscript 0 2 𝜋 𝑡 diffop Mathieu-me 𝜈 1 𝑡 superscript 2 Mathieu-me 𝜈 2 𝑚 1 𝑡 superscript 2 2 𝑧 2 𝑡 𝑡 superscript 1 𝑚 1 imaginary-unit subscript superscript 𝛼 0 𝜈 𝑚 Mathieu-D 1 𝜈 𝜈 2 𝑚 1 𝑧 {\displaystyle{\displaystyle\dfrac{\cosh z}{\pi^{2}}\int_{0}^{2\pi}\dfrac{\sin t% \mathrm{me}_{\nu}'\left(t,h^{2}\right)\mathrm{me}_{-\nu-2m-1}\left(t,h^{2}% \right)}{{\sinh^{2}}z+{\sin^{2}}t}\mathrm{d}t=(-1)^{m+1}\mathrm{i}h\alpha^{(0)% }_{\nu,m}\mathrm{D}_{1}\left(\nu,\nu+2m+1,z\right),}}


Constraint(s)

Symbols List

Resources that cite this formula

No records found.