Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in
Formula
:
9166
From MaRDI portal
Jump to:
navigation
,
search
Digital Library of Mathematical Functions ID
28.28.E43
β
^
n
,
m
=
1
2
π
∫
0
2
π
sin
t
se
n
(
t
,
h
2
)
ce
m
(
t
,
h
2
)
d
t
=
(
-
1
)
p
2
i
π
se
n
′
(
0
,
h
2
)
ce
m
(
0
,
h
2
)
h
Dsc
1
(
n
,
m
,
0
)
.
subscript
^
𝛽
𝑛
𝑚
1
2
𝜋
superscript
subscript
0
2
𝜋
𝑡
Mathieu-se
𝑛
𝑡
superscript
ℎ
2
Mathieu-ce
𝑚
𝑡
superscript
ℎ
2
𝑡
superscript
1
𝑝
2
imaginary-unit
𝜋
diffop
Mathieu-se
𝑛
1
0
superscript
ℎ
2
Mathieu-ce
𝑚
0
superscript
ℎ
2
ℎ
Mathieu-Dsc
1
𝑛
𝑚
0
{\displaystyle{\displaystyle\widehat{\beta}_{n,m}=\dfrac{1}{2\pi}\int_{0}^{2% \pi}\sin t\mathrm{se}_{n}\left(t,h^{2}\right)\mathrm{ce}_{m}\left(t,h^{2}% \right)\mathrm{d}t=(-1)^{p}\dfrac{2}{\mathrm{i}\pi}\dfrac{\mathrm{se}_{n}'% \left(0,h^{2}\right)\mathrm{ce}_{m}\left(0,h^{2}\right)}{h\mathrm{Dsc}_{1}% \left(n,m,0\right)}.}}
Constraint(s)
Symbols List
Dsc
j
(
n
,
m
,
z
)
Mathieu-Dsc
𝑗
𝑛
𝑚
𝑧
{\displaystyle{\displaystyle\mathrm{Dsc}_{\NVar{j}}\left(\NVar{n},\NVar{m},% \NVar{z}\right)}}
: cross-products of radial Mathieu functions and their derivatives
ce
n
(
z
,
q
)
Mathieu-ce
𝑛
𝑧
𝑞
{\displaystyle{\displaystyle\mathrm{ce}_{\NVar{n}}\left(\NVar{z},\NVar{q}% \right)}}
:
se
n
(
z
,
q
)
Mathieu-se
𝑛
𝑧
𝑞
{\displaystyle{\displaystyle\mathrm{se}_{\NVar{n}}\left(\NVar{z},\NVar{q}% \right)}}
:
π
{\displaystyle{\displaystyle\pi}}
: the ratio of the circumference of a circle to its diameter
d
x
𝑥
{\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
: differential of x
i
imaginary-unit
{\displaystyle{\displaystyle\mathrm{i}}}
: imaginary unit
∫
{\displaystyle{\displaystyle\int}}
: integral
sin
z
𝑧
{\displaystyle{\displaystyle\sin\NVar{z}}}
: sine function
m
𝑚
{\displaystyle{\displaystyle m}}
: integer
h
ℎ
{\displaystyle{\displaystyle h}}
: parameter
n
𝑛
{\displaystyle{\displaystyle n}}
: integer
Resources that cite this formula
No records found.
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item