The Borodin-Kostochka conjecture for graphs containing a doubly critical edge (Q1010594)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Borodin-Kostochka conjecture for graphs containing a doubly critical edge |
scientific article; zbMATH DE number 5540822
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Borodin-Kostochka conjecture for graphs containing a doubly critical edge |
scientific article; zbMATH DE number 5540822 |
Statements
The Borodin-Kostochka conjecture for graphs containing a doubly critical edge (English)
0 references
7 April 2009
0 references
Summary: We prove that if \(G\) is a graph containing a doubly-critical edge and satisfying \(\chi \geq \Delta \geq 6\), then \(G\) contains a \(K_{\Delta}\).
0 references
double critical edge
0 references
lonely path lemma
0 references
optimal coloring
0 references
vertex disjoint paths
0 references