A quantified version of Bourgain's sum-product estimate in \(\mathbb F_{p}\) for subsets of incomparable sizes (Q1010777)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A quantified version of Bourgain's sum-product estimate in \(\mathbb F_{p}\) for subsets of incomparable sizes |
scientific article; zbMATH DE number 5540963
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A quantified version of Bourgain's sum-product estimate in \(\mathbb F_{p}\) for subsets of incomparable sizes |
scientific article; zbMATH DE number 5540963 |
Statements
A quantified version of Bourgain's sum-product estimate in \(\mathbb F_{p}\) for subsets of incomparable sizes (English)
0 references
7 April 2009
0 references
Summary: Let \({\mathbb F}_p\) be the field of residue classes modulo a prime number \(p\). In this paper we prove that if \(A,B\subset {\mathbb F}_p^*,\) then for any fixed \(\varepsilon>0,\) \[ |A+A|+|AB|\gg \left(\min \left\{|B|, \frac{p}{|A|}\right\}\right)^{1/25-\varepsilon}|A|. \] This quantifies \textit{J. Bourgain}'s recent sum-product estimate [Int. J. Number Theory 1, No. 1, 1--32 (2005; Zbl 1173.11310)].
0 references
0 references
0.8891854
0 references
0.8857386
0 references
0.8655009
0 references
0.8643425
0 references
0.8638548
0 references
0.8634206
0 references
0.8591936
0 references