Toeplitz operators and arguments of analytic functions (Q1014217)

From MaRDI portal





scientific article; zbMATH DE number 5547452
Language Label Description Also known as
English
Toeplitz operators and arguments of analytic functions
scientific article; zbMATH DE number 5547452

    Statements

    Toeplitz operators and arguments of analytic functions (English)
    0 references
    27 April 2009
    0 references
    For a Toeplitz operator \(T_\varphi\) with symbol \(\varphi\in L^\infty({\mathbb T})\), let \(\text{Ker}_pT_\varphi\) denote its kernel on the Hardy space \(H^p\), \(1\leq p\leq\infty\), of the unit circle \({\mathbb T}\). Relations between \(\text{Ker}_pT_\varphi\) and the smoothness of \(\varphi\) are studied. Let \(\Lambda^\alpha\) (resp., \(A^\alpha\)), \(0<\alpha<\infty\), denote the Lipschitz (Hölder-Zygmund) space (resp., its subspace of analytic functions). Suppose that \(\beta=\alpha-1/p\) and \(N\) is the integral part of \(1/(\alpha p)\). Let us formulate two sample results for unimodular symbols \(\varphi\in\Lambda^\alpha\). If \(1/p<\alpha<\infty\), then \(\text{Ker}_pT_\varphi\subset A^\beta\) and \(\|f\|_{\Lambda^\beta}\leq\text{const}\,\|\varphi\|_{\Lambda^\alpha}\|f\|_p\) for each \(f\in\text{Ker}_pT_\varphi\). If \(0<\alpha<\infty\), then \(\text{Ker}_pT_\varphi\subset A^\alpha\) and \(\|f\|_{\Lambda^\alpha}\leq\text{const}\,\|\varphi\|_{\Lambda^\alpha}^{N+2} \|f\|_p\) for every \(f\in\text{Ker}_pT_\varphi\). The constants in the above inequalities are independent of \(f\) and \(\varphi\). Similar and more general results for various smoothness classes are obtained, and several approaches are discussed.
    0 references
    Toeplitz operator
    0 references
    symbol
    0 references
    kernel
    0 references
    Lipschitz space
    0 references
    unimodular function
    0 references
    BMO
    0 references
    Gevrey class
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references