New conjectured inequalities for zeros of Jacobi polynomials (Q1014369)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: New conjectured inequalities for zeros of Jacobi polynomials |
scientific article; zbMATH DE number 5547605
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | New conjectured inequalities for zeros of Jacobi polynomials |
scientific article; zbMATH DE number 5547605 |
Statements
New conjectured inequalities for zeros of Jacobi polynomials (English)
0 references
27 April 2009
0 references
The author discusses the inequality \(\bigl(n+(\alpha+\beta+1)/2\bigr)\theta_{n,r}^{(\alpha,\beta)}> \bigl(n+(\alpha+\beta+3)/2\bigr)\theta_{n+1,r}^{(\alpha,\beta)}\), \(r=1,2,\dots,n\), \(n\geq1\), where \(x_{n,r}^{(\alpha,\beta)}=\cos\theta_{n,r}^{(\alpha,\beta)}\) is the \(r\)-th zero in the descending order of the Jacobi polynomial \(P_n^{(\alpha,\beta)}(x)\). Using known \(n\)-large asymptotics and a numeric test for \(n\leq100\), the author formulates several conjectures on a domain of validity of the above inequality (and of the inequality with the opposite sign) in the \((\alpha,\beta)\) plane for all \(n\geq r\) and some fixed \(r\).
0 references
Jacobi polynomials
0 references
zeros
0 references
asymptotics
0 references
inequalities
0 references