On the structure of \(J\)-Potapov sequences (Q1014499)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the structure of \(J\)-Potapov sequences |
scientific article; zbMATH DE number 5549285
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the structure of \(J\)-Potapov sequences |
scientific article; zbMATH DE number 5549285 |
Statements
On the structure of \(J\)-Potapov sequences (English)
0 references
29 April 2009
0 references
The main aim of this paper is to investigate the inner structure of infinite \(J\)-Potapov sequences of complex \(m\times m\) matrices, where \(J\) is a \(m\times m\) matrix with \(J^*=J\) and \(J^2=I_m\), showing that such sequences have a certain geometric structure. They investigate connections between \(J\)-Potapov sequences and their \(J\)-Potapov-Ginsburg transforms, the latter being \(m\times m\) Schur sequences. An important consequence of these results is that a concept of centrality, introduced by the authors, is invariant with respect to the \(J\)-Potapov-Ginsburg transform.
0 references
\(J\)-Potapov function
0 references
\(J\)-Potapov sequence
0 references
\(J\)-Potapov-Ginsburg transform
0 references
\(m\times m\) Schur sequence
0 references
\(J\)-centrality
0 references