Middle convolution and Heun's equation (Q1016686)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Middle convolution and Heun's equation
scientific article

    Statements

    Middle convolution and Heun's equation (English)
    0 references
    0 references
    21 May 2009
    0 references
    The author generalises his previous results [see \textit{K. Takemura}, J. Math. Anal. Appl. 342, No. 1, 52-69 (2008; Zbl 1159.34058)] concerning middle convolution of Fuchsian systems of the form \[ {{dY} \over {dz}} = \left( {{{{A_0}} \over z} + {{{A_1}} \over {z - 1}} + {{{A_t}} \over {z - t}}} \right)Y,\quad {A_0},\,{A_1},\,{A_t} \in {M_2}(C). \] Then the received new integral transformations are applied to Heun's equation \[ {{{d^2}y} \over {dz}} + \left( {{\gamma \over z} + {\delta \over {z - 1}} + {\varepsilon \over {z - t}}} \right){{dy} \over {dx}} + {{\alpha \beta z - q} \over {z(z - 1)(z - t)}}y = 0. \] It is proved, for example, that if \(\alpha \) or \(\beta \) equal to an integer \(\eta \) distinct from \(1\), the transformation \[ \begin{aligned} & y \to {y^{(\eta - 1)}},\text{{ (if }}{\kern 1pt}\eta > 1) \\ & y(z) \to \int\limits_{{C_p}} {y(w){{(z - w)}^{ - \eta }}dw} ,\text{{ (if }}{\kern 1pt}\eta < 1) \end{aligned} \] for \(p \in \{ 0,{\kern 1pt} \,1,\,{\kern 1pt} t,\,\infty \} \) gives a solution to Heun's equation (but with other parameters).
    0 references
    middle convolution
    0 references
    Heun's equation
    0 references
    the sixth Painlevé equation
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references