A new approach to \(L^{p}\) estimates for Calderón-Zygmund type singular integrals (Q1018038)

From MaRDI portal





scientific article; zbMATH DE number 5553550
Language Label Description Also known as
English
A new approach to \(L^{p}\) estimates for Calderón-Zygmund type singular integrals
scientific article; zbMATH DE number 5553550

    Statements

    A new approach to \(L^{p}\) estimates for Calderón-Zygmund type singular integrals (English)
    0 references
    13 May 2009
    0 references
    Let \(T_{\varepsilon}\) be a truncated Calderón-Zygmund singular integral operator: \[ T_{\varepsilon}f(x) = \int_{ | x-y | > \varepsilon} \frac{\Omega (x-y)}{ | x-y |^{n}} f(y)dy, \] where \(\Omega\) is homogeneous degree zero, \(\Omega \in C^1(S^{n-1})\) and \(\int_{S^{n-1}}\Omega (x) d\sigma =0\). The author gives a new proof for \(L^p \) boundedness of \(T_{\varepsilon}\) for \(2<p<\infty\) without using Calderón-Zygmund decomposition and interpolation theorem. The proof is different from that in \textit{D. Li} and \textit{L. Wang} [Arch. Math. 87, No. 5, 458--467 (2006; Zbl 1104.42009)].
    0 references
    \(L^p\) estimates
    0 references
    Calderón-Zygmund
    0 references
    singular integrals
    0 references
    0 references

    Identifiers