A new approach to \(L^{p}\) estimates for Calderón-Zygmund type singular integrals (Q1018038)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A new approach to \(L^{p}\) estimates for Calderón-Zygmund type singular integrals |
scientific article; zbMATH DE number 5553550
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A new approach to \(L^{p}\) estimates for Calderón-Zygmund type singular integrals |
scientific article; zbMATH DE number 5553550 |
Statements
A new approach to \(L^{p}\) estimates for Calderón-Zygmund type singular integrals (English)
0 references
13 May 2009
0 references
Let \(T_{\varepsilon}\) be a truncated Calderón-Zygmund singular integral operator: \[ T_{\varepsilon}f(x) = \int_{ | x-y | > \varepsilon} \frac{\Omega (x-y)}{ | x-y |^{n}} f(y)dy, \] where \(\Omega\) is homogeneous degree zero, \(\Omega \in C^1(S^{n-1})\) and \(\int_{S^{n-1}}\Omega (x) d\sigma =0\). The author gives a new proof for \(L^p \) boundedness of \(T_{\varepsilon}\) for \(2<p<\infty\) without using Calderón-Zygmund decomposition and interpolation theorem. The proof is different from that in \textit{D. Li} and \textit{L. Wang} [Arch. Math. 87, No. 5, 458--467 (2006; Zbl 1104.42009)].
0 references
\(L^p\) estimates
0 references
Calderón-Zygmund
0 references
singular integrals
0 references