On the missing eigenvalue problem for an inverse Sturm-Liouville problem (Q1019132)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the missing eigenvalue problem for an inverse Sturm-Liouville problem |
scientific article; zbMATH DE number 5558947
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the missing eigenvalue problem for an inverse Sturm-Liouville problem |
scientific article; zbMATH DE number 5558947 |
Statements
On the missing eigenvalue problem for an inverse Sturm-Liouville problem (English)
0 references
28 May 2009
0 references
Let \(\lambda_n, n\geq 0,\) be the eigenvalues of the boundary value problem \[ -u''+q(x)u=\lambda u,\; u'(0)-hu(0)=u'(\pi)+Hu(\pi)=0. \] Let \(q(x), x\in[0,\pi/2], h\) and \(H\) are known a priori. Fix \(m\geq 0.\) It is proved that the specification of \(\lambda_n,\; n\geq 0,\; n\neq m,\) uniquely determines \(q(x), x\in[\pi/2,\pi].\)
0 references
Sturm-Liouville operator
0 references
Inverse spectral problem
0 references
missing eigenvalue
0 references
0 references
0.9133022
0 references
0.9058305
0 references
0.90564716
0 references
0.9039836
0 references
0.90265155
0 references
0.90225214
0 references