Prüfer domains of generalized power series (Q1019252)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Prüfer domains of generalized power series |
scientific article; zbMATH DE number 5560418
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Prüfer domains of generalized power series |
scientific article; zbMATH DE number 5560418 |
Statements
Prüfer domains of generalized power series (English)
0 references
2 June 2009
0 references
Let \(D\) be a commutative integral domain with identity and \((S,\leq)\) be a strictly ordered monoid. Let \(A=[[D^{S,\leq}]]\) be the generalized power series ring. The paper under review discovers when \(A=[[D^{S,\leq}]]\) is a Prüfer (Bézout, Dedekind, PID) domain. For example one of the results indicates that: if \((G,\leq)\) is a nonzero linearly ordered group, then \(A=[[D^{S,\leq}]]\) is a Prüfer domain if and only if \(D\) is a field.
0 references
Prüfer domain
0 references
Bear ring
0 references
PP-ring
0 references
generalized power series
0 references
0.94644594
0 references
0.9383946
0 references
0.9372673
0 references
0.9142523
0 references
0 references
0.90343136
0 references
0.9011644
0 references
0 references
0.8981923
0 references