Riesz transforms associated to Bessel operators (Q1022562)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Riesz transforms associated to Bessel operators |
scientific article; zbMATH DE number 5567364
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Riesz transforms associated to Bessel operators |
scientific article; zbMATH DE number 5567364 |
Statements
Riesz transforms associated to Bessel operators (English)
0 references
22 June 2009
0 references
From the author's abstract: For \(v>0\), the Bessel operator \(S_v\) defined on \(L^2({\mathbb R}^+, x^{2v} dx)\) is considered. The author proves, in a simple way, that the Riesz transform associated to \(S_v\) is bounded on \(L^p({\mathbb R}^+, x^{2v} dx)\), \(1<p<\infty\), with a constant only depending on \(p\). Also a weighted version is given and the constant is estimated.
0 references
Riesz transforms
0 references
Bessel operators
0 references
Hilbert transform
0 references
weighted norm inequalities
0 references
0 references
0.9867837
0 references
0.9580393
0 references
0.94314694
0 references
0.93587416
0 references
0.9281436
0 references
0.91774464
0 references
0.9166531
0 references
0.91440254
0 references