Mean value of the character sums over interval \([1,\frac q8)\) (Q1025700)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Mean value of the character sums over interval \([1,\frac q8)\) |
scientific article; zbMATH DE number 5568279
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Mean value of the character sums over interval \([1,\frac q8)\) |
scientific article; zbMATH DE number 5568279 |
Statements
Mean value of the character sums over interval \([1,\frac q8)\) (English)
0 references
23 June 2009
0 references
Let \(k\geq2\) be a fixed integer, and \(q>8\) an odd integer. The author studies the character sum \[ S(\chi)=\sum\limits_{1\leq a<\frac{q}{8}}\chi(a). \] More precisely, he studies the \((2k)\)-th moment of \(S(\chi)\) with \(\chi\) varies over the set of primitive even characters to the modulus \(q\). He proves the following. \[ \sum\limits_{\chi\text{ even and primitive}}|S(\chi)|^{2k}=J(q)q^k\sum\limits_{(n,2q)=1}\frac{a_k(n)}{n^2}+O(q^{k+\varepsilon}), \] where \(J(q)\) is the number of primitive even characters to the modulus \(q\), and the terms \(a_k(n)\) are explicitly given, and are bounded by \(O(n^{\varepsilon})\).
0 references
character sums
0 references
mean value
0 references
asymptotic formula
0 references
0.8730408
0 references
0.8730307
0 references
0 references
0.8646793
0 references
0.8629167
0 references
0.86086005
0 references
0.8554097
0 references