Error estimates of triangular finite elements under a weak angle condition (Q1026458)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Error estimates of triangular finite elements under a weak angle condition |
scientific article; zbMATH DE number 5570579
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Error estimates of triangular finite elements under a weak angle condition |
scientific article; zbMATH DE number 5570579 |
Statements
Error estimates of triangular finite elements under a weak angle condition (English)
0 references
25 June 2009
0 references
By analyzing the interpolation operator of \textit{V. Girault} and \textit{P. A. Raviart} [Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer Series in Computational Mathematics, 5. (Berlin) etc.: Springer- Verlag. (1986; Zbl 0585.65077)] over triangular meshes, the authors prove optimal interpolation error estimates for Lagrange triangular finite elements of arbitrary order under the maximal angle condition in a unified and simple way. The key estimate is only an application of the Bramble-Hilbert lemma
0 references
interpolation error estimates
0 references
bramble-Hilbert Lemma
0 references
maximal angle condition
0 references
Lagrange triangular finite elements
0 references
0 references
0.90397716
0 references
0.89375204
0 references
0 references
0.8806874
0 references
0.8744255
0 references
0.87385666
0 references
0.87294036
0 references