Asymptotic representations for Fibonacci reciprocal sums and Euler's formulas for zeta values (Q1032672)

From MaRDI portal





scientific article; zbMATH DE number 5620674
Language Label Description Also known as
English
Asymptotic representations for Fibonacci reciprocal sums and Euler's formulas for zeta values
scientific article; zbMATH DE number 5620674

    Statements

    Asymptotic representations for Fibonacci reciprocal sums and Euler's formulas for zeta values (English)
    0 references
    0 references
    0 references
    0 references
    26 October 2009
    0 references
    Let \(\alpha,\beta\in\mathbb C\) such that \(\alpha\beta= -1\), \(|\beta|< 1\). Define sequences \(U_n= (\alpha^n- \beta^n)/(\alpha- \beta)\), \(V_n= \alpha^n+ \beta^n\) \((n\geq 0)\). If \(\beta= (1-\sqrt{5})/2\), then \(U_n= F_n\) (Fibonacci number), \(V_n= L_n\) (Lucas number). For \(s\in\mathbb N\), let \[ \begin{aligned} h_{2s} &:= (\alpha-\beta)^{-2s} \sum^\infty_{n=1} U^{-2s}_{2n},\\ g^*_{2s-1} &:= \sum^\infty_{n=1} (-1)^{n+1} V^{-(2s-1)}_{2n-1},\end{aligned} \] which are holomorphic for \(|\beta|< 1\). In the present paper, the authors give asymptotic representations for these functions as follows: For \(-1<\beta< -1+\delta_0\), \[ \begin{aligned} (\alpha^2- \beta^2)^{2s} h_{2s} &= \Phi_s(\eta)(1+ O(e^{-\pi^2/(2\eta)})),\\ (\alpha+ \beta)^{2s-1} g^*_{2s-1} &= \psi_s(\eta(1+ O(e^{-\pi^2/(2\eta)})),\end{aligned} \] where \(\delta_0> 0\) is sufficiently small, \(\eta=-\log(-\beta)\), and \(\Phi_s(x)\), \(\Psi_s(x)\) are entire functions which expressions are explicitly given (here we omit them). In the limiting cases of these results, we obtain the well-known Euler's formulas for values of zeta functions.
    0 references
    Fibonacci number
    0 references
    Lucas number
    0 references
    asymptotic representation
    0 references
    zeta function
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references