The Neumann problem for a second-order singular system (Q1033585)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The Neumann problem for a second-order singular system |
scientific article; zbMATH DE number 5626724
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The Neumann problem for a second-order singular system |
scientific article; zbMATH DE number 5626724 |
Statements
The Neumann problem for a second-order singular system (English)
0 references
6 November 2009
0 references
Consider the boundary value problem \[ \begin{gathered} u''+ t^{-1} ku' = -\varphi_0(t, v),\;v''+ t^{-1} kv'= \psi_0(t, u),\\ u'(0)= 0,\quad u'(\tau)= a+ A_{11}u(\tau)+ A_{12} v(\tau),\\ v'(0)= 0,\quad v'(\tau)= b- A_{21} u(\tau)= A_{22} v(\tau),\end{gathered}\tag{\(*\)} \] where \(u,v,a,b\in\mathbb{R}^n\), \(\varphi_0,\psi_0\in C(I\times \mathbb{R}^n)\), \(I= [0,\tau]\), \(A_{ij}\) are \(n\times n\)-matrices, \(k>-1\). The author derives conditions such that \((*)\) has for any \(a\) and \(b\) a solution.
0 references
0.96687686
0 references
0.9305384
0 references
0.92021036
0 references
0 references