Rank-one cross commutators on backward shift invariant subspaces on the bidisk (Q1034295)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Rank-one cross commutators on backward shift invariant subspaces on the bidisk |
scientific article; zbMATH DE number 5629533
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Rank-one cross commutators on backward shift invariant subspaces on the bidisk |
scientific article; zbMATH DE number 5629533 |
Statements
Rank-one cross commutators on backward shift invariant subspaces on the bidisk (English)
0 references
11 November 2009
0 references
Let \(L^2=L^2(\Gamma^2)\) be the Lebesgue space and \(H^2=H^2(\Gamma^2)\) be the Hardy space over \[ \Gamma^2= \{(z,w):z,w\in {\mathbb C},\;| z|=1,\;| w|=1\}. \] Let \(P\) be the orthogonal projection from \(L^2\) onto \(H^2\). For \(\psi\in H^\infty (\Gamma^2)\), the Toeplitz operator \(T_\psi\) is defined in the standard manner: \(T_\psi=P\psi I\). A subspace \(M \subset H^2\) is called invariant if \(zM \subset M\) and \(wM \subset M\). It is supposed that \(M\) is nontrivial. For such subspace \(M\), denote \(N=H^2\ominus M\). For each \(\psi\in L^\infty(\Gamma^2)\), define the operator \(S_\psi\) on \(N\) by the equality \( S_\psi=P_N T_\psi|_{N} \), where \(P_N\) is the orthogonal projection from \(H^2\) onto~\(N\). The main result of the paper gives the full description of the subspaces \(M\) for which the commutator \([S_z,S_w^*]\) has rank one.
0 references
backward shift invariant subspace
0 references
invariant subspace
0 references
Hardy space
0 references
cross commutator
0 references
rank-one operator
0 references